Finnish Center for Astronomy with

Finland

Finnish Center for Astronomy with

Finland

Time filter

Source Type

Mancini L.,Max Planck Institute for Astronomy | Mancini L.,National institute for astrophysics | Mancini L.,University of Rome Tor Vergata | Southworth J.,Keele University | And 37 more authors.
Monthly Notices of the Royal Astronomical Society | Year: 2017

We report 13 high-precision light curves of eight transits of the exoplanetWASP-52 b, obtained by using four medium-class telescopes, through different filters, and adopting the defocussing technique. One transit was recorded simultaneously from two different observatories and another one from the same site but with two different instruments, including a multiband camera. Anomalies were clearly detected in five light curves and modelled as star-spots occulted by the planet during the transit events.We fitted the clean light curves with the JKTEBOP code, and those with the anomalies with the PRISM+GEMC codes in order to simultaneously model the photometric parameters of the transits and the position, size and contrast of each star-spot. We used these new light curves and some from the literature to revise the physical properties of the WASP-52 system. Star-spots with similar characteristics were detected in four transits over a period of 43 d. In the hypothesis that we are dealing with the same star-spot, periodically occulted by the transiting planet, we estimated the projected orbital obliquity of WASP-52 b to be λ = 3. ° 8 ± 8. ° 4. We also determined the true orbital obliquity, ψ = 20° ± 50°, which is, although very uncertain, the first measurement of ψ purely from star-spot crossings. We finally assembled an optical transmission spectrum of the planet and searched for variations of its radius as a function ofwavelength. Our analysis suggests a flat transmission spectrum within the experimental uncertainties. © 2016 The Authors.


Aleksic J.,IFAE | Ansoldi S.,University of Udine | Antonelli L.A.,National institute for astrophysics | Antoranz P.,University of Siena | And 169 more authors.
Astroparticle Physics | Year: 2016

Abstract MAGIC is a system of two Imaging Atmospheric Cherenkov Telescopes located in the Canary island of La Palma, Spain. During summer 2011 and 2012 it underwent a series of upgrades, involving the exchange of the MAGIC-I camera and its trigger system, as well as the upgrade of the readout system of both telescopes. We use observations of the Crab Nebula taken at low and medium zenith angles to assess the key performance parameters of the MAGIC stereo system. For low zenith angle observations, the standard trigger threshold of the MAGIC telescopes is ∼ 50 GeV. The integral sensitivity for point-like sources with Crab Nebula-like spectrum above 220 GeV is (0.66 ± 0.03)% of Crab Nebula flux in 50 h of observations. The angular resolution, defined as the σ of a 2-dimensional Gaussian distribution, at those energies is ≲ 0.07°, while the energy resolution is 16%. We also re-evaluate the effect of the systematic uncertainty on the data taken with the MAGIC telescopes after the upgrade. We estimate that the systematic uncertainties can be divided in the following components: < 15% in energy scale, 11%-18% in flux normalization and ± 0.15 for the energy spectrum power-law slope. © 2015 Elsevier B.V.


Aleksic J.,IFAE | Ansoldi S.,University of Udine | Antonelli L.A.,National institute for astrophysics | Antoranz P.,University of Siena | And 169 more authors.
Astroparticle Physics | Year: 2016

Abstract The MAGIC telescopes are two Imaging Atmospheric Cherenkov Telescopes (IACTs) located on the Canary island of La Palma. The telescopes are designed to measure Cherenkov light from air showers initiated by gamma rays in the energy regime from around 50 GeV to more than 50 TeV. The two telescopes were built in 2004 and 2009, respectively, with different cameras, triggers and readout systems. In the years 2011-2012 the MAGIC collaboration undertook a major upgrade to make the stereoscopic system uniform, improving its overall performance and easing its maintenance. In particular, the camera, the receivers and the trigger of the first telescope were replaced and the readout of the two telescopes was upgraded. This paper (Part I) describes the details of the upgrade as well as the basic performance parameters of MAGIC such as raw data treatment, linearity in the electronic chain and sources of noise. In Part II, we describe the physics performance of the upgraded system. © 2015 Elsevier B.V.


Evans D.F.,Keele University | Southworth J.,Keele University | Maxted P.F.L.,Keele University | Skottfelt J.,Open University Milton Keynes | And 38 more authors.
Astronomy and Astrophysics | Year: 2016

Context. Wide binaries are a potential pathway for the formation of hot Jupiters. The binary fraction among host stars is an important discriminator between competing formation theories, but has not been well characterised. Additionally, contaminating light from unresolved stars can significantly affect the accuracy of photometric and spectroscopic measurements in studies of transiting exoplanets. Aims. We observed 101 transiting exoplanet host systems in the Southern hemisphere in order to create a homogeneous catalogue of both bound companion stars and contaminating background stars, in an area of the sky where transiting exoplanetary systems have not been systematically searched for stellar companions. We investigate the binary fraction among the host stars in order to test theories for the formation of hot Jupiters. Methods. Lucky imaging observations from the Two Colour Instrument on the Danish 1.54 m telescope at La Silla were used to search for previously unresolved stars at small angular separations. The separations and relative magnitudes of all detected stars were measured. For 12 candidate companions to 10 host stars, previous astrometric measurements were used to evaluate how likely the companions are to be physically associated. Results. We provide measurements of 499 candidate companions within 20 arcsec of our sample of 101 planet host stars. 51 candidates are located within 5 arcsec of a host star, and we provide the first published measurements for 27 of these. Calibrations for the plate scale and colour performance of the Two Colour Instrument are presented. Conclusions. We find that the overall multiplicity rate of the host stars is 38-13 +17%, consistent with the rate among solar-type stars in our sensitivity range, suggesting that planet formation does not preferentially occur in long period binaries compared to a random sample of field stars. Long period stellar companions (P > 10 yr) appear to occur independently of short period companions, and so the population of close-in stellar companions is unconstrained by our study. © ESO, 2016.


Aleksic J.,IFAE | Antonelli L.A.,National institute for astrophysics | Antoranz P.,University of Siena | Backes M.,TU Dortmund | And 156 more authors.
Astronomy and Astrophysics | Year: 2011

Context. 3C 279, the first quasar discovered to emit VHE γ-rays by the MAGIC telescope in 2006, was reobserved by MAGIC in January 2007 during a major optical flare and from December 2008 to April 2009 following an alert from the Fermi space telescope on an exceptionally high γ-ray state. Aims. The January 2007 observations resulted in a detection on January 16 with significance 5.4σ, corresponding to a F (>150 GeV) (3.8 ± 0.8) × 10-11 ph cm-2 s-1 while the overall data sample does not show significant signal. The December 2008-April 2009 observations did not detect the source. We study the multiwavelength behaviour of the source at the epochs of MAGIC observations, collecting quasi-simultaneous data at optical and X-ray frequencies and for 2009 also γ-ray data from Fermi. Methods. We study the light curves and spectral energy distribution of the source. The spectral energy distributions of three observing epochs (including the February 2006, which has been previously published) are modelled with one-zone inverse Compton models and the emission on January 16, 2007 also with two zone model and with a lepto-hadronic model. Results. We find that the VHE γ-ray emission detected in 2006 and 2007 challenges standard one-zone model, based on relativistic electrons in a jet scattering broad line region photons, while the other studied models fit the observed spectral energy distribution more satisfactorily. © 2011 ESO.


Aleksic J.,IFAE | Antonelli L.A.,National institute for astrophysics | Antoranz P.,University of Siena | Backes M.,TU Dortmund | And 158 more authors.
Astrophysical Journal Letters | Year: 2011

Very high energy (VHE) γ-ray emission from the flat spectrum radio quasar (FSRQ) PKS1222+21 (4C21.35, z = 0.432) was detected with the MAGIC Cherenkov telescopes during a short observation (0.5hr) performed on 2010 June 17. The MAGIC detection coincides with high-energy MeV/GeV γ-ray activity measured by the Large Area Telescope (LAT) on board the Fermi satellite. The VHE spectrum measured by MAGIC extends from about 70GeV up to at least 400GeV and can be well described by a power-law dN/dE E -Γ with a photon index Γ = 3.75 0.27stat 0.2syst. The averaged integral flux above 100GeV is (4.6 0.5) × 10-10 cm-2 s-1 (1 Crab Nebula flux). The VHE flux measured by MAGIC varies significantly within the 30 minute exposure implying a flux doubling time of about 10 minutes. The VHE and MeV/GeV spectra, corrected for the absorption by the extragalactic background light (EBL), can be described by a single power law with photon index 2.72 0.34 between 3GeV and 400GeV, and is consistent with emission belonging to a single component in the jet. The absence of a spectral cutoff constrains the γ-ray emission region to lie outside the broad-line region, which would otherwise absorb the VHE γ-rays. Together with the detected fast variability, this challenges present emission models from jets in FSRQs. Moreover, the combined Fermi/LAT and MAGIC spectral data yield constraints on the density of the EBL in the UV-optical to near-infrared range that are compatible with recent models. © 2011. The American Astronomical Society. All rights reserved.

Loading Finnish Center for Astronomy with collaborators
Loading Finnish Center for Astronomy with collaborators