Time filter

Source Type

Newtownards, Ireland

Banerji M.,University College London | Banerji M.,University of Cambridge | Lahav O.,University College London | Lintott C.J.,Denys Wilkinson Building | And 10 more authors.
Monthly Notices of the Royal Astronomical Society

We present morphological classifications obtained using machine learning for objects in the Sloan Digital Sky Survey DR6 that have been classified by Galaxy Zoo into three classes, namely early types, spirals and point sources/artefacts. An artificial neural network is trained on a subset of objects classified by the human eye, and we test whether the machine-learning algorithm can reproduce the human classifications for the rest of the sample. We find that the success of the neural network in matching the human classifications depends crucially on the set of input parameters chosen for the machine-learning algorithm. The colours and parameters associated with profile fitting are reasonable in separating the objects into three classes. However, these results are considerably improved when adding adaptive shape parameters as well as concentration and texture. The adaptive moments, concentration and texture parameters alone cannot distinguish between early type galaxies and the point sources/artefacts. Using a set of 12 parameters, the neural network is able to reproduce the human classifications to better than 90 per cent for all three morphological classes. We find that using a training set that is incomplete in magnitude does not degrade our results given our particular choice of the input parameters to the network. We conclude that it is promising to use machine-learning algorithms to perform morphological classification for the next generation of wide-field imaging surveys and that the Galaxy Zoo catalogue provides an invaluable training set for such purposes. © 2010 The Authors. Journal compilation © 2010 RAS. Source

Lintott C.,Oxford Astrophysics | Schawinski K.,Yale University | Bamford S.,University of Nottingham | Slosar A.,Brookhaven National Laboratory | And 10 more authors.
Monthly Notices of the Royal Astronomical Society

Morphology is a powerful indicator of a galaxy's dynamical and merger history. It is strongly correlated with many physical parameters, including mass, star formation history and the distribution of mass. The Galaxy Zoo project collected simple morphological classifications of nearly 900 000 galaxies drawn from the Sloan Digital Sky Survey, contributed by hundreds of thousands of volunteers. This large number of classifications allows us to exclude classifier error, and measure the influence of subtle biases inherent in morphological classification. This paper presents the data collected by the project, alongside measures of classification accuracy and bias. The data are now publicly available and full catalogues can be downloaded in electronic format from © 2010 The Authors. Monthly Notices of the Royal Astronomical Society © 2010 RAS. Source

Darg D.W.,University of Oxford | Kaviraj S.,University of Oxford | Kaviraj S.,University College London | Lintott C.J.,University of Oxford | And 12 more authors.
Monthly Notices of the Royal Astronomical Society

Following the study of Darg et al., we explore the environments, optical colours, stellar masses, star formation and active galactic nucleus activity in a sample of 3003 pairs of merging galaxies drawn from the Sloan Digital Sky Survey using visual classifications from the Galaxy Zoo project. While Darg et al. found that the spiral-to-elliptical ratio in (major) mergers appeared higher than that of the global galaxy population, no significant differences are found between the environmental distributions of mergers and a randomly selected control sample. This makes the high occurrence of spirals in mergers unlikely to be an environmental effect and must therefore arise from differing time-scales of detectability for spirals and ellipticals. We find that merging galaxies have a wider spread in colour than the global galaxy population, with a significant blue tail resulting from intense star formation in spiral mergers. Galaxies classed as star-forming using their emission-line properties have average star formation rates approximately doubled by the merger process though star formation is negligibly enhanced in merging elliptical galaxies. We conclude that the internal properties of galaxies significantly affect the time-scales over which merging systems can be detected (as suggested by recent theoretical studies) which leads to spirals being 'over-observed' in mergers. We also suggest that the transition mass 3 × 1010 M⊙, noted by Kauffmann et al., below which ellipticals are rare could be linked to disc survival/destruction in mergers. © 2009 RAS. Source

Masters K.L.,University of Portsmouth | Masters K.L.,University of Nottingham | Nichol R.,University of Portsmouth | Bamford S.,University of Nottingham | And 13 more authors.
Monthly Notices of the Royal Astronomical Society

We investigate the effect of dust on spiral galaxies by measuring the inclination dependence of optical colours for 24 276 well-resolved Sloan Digital Sky Survey (SDSS) galaxies visually classified via the Galaxy Zoo project. We find clear trends of reddening with inclination which imply a total extinction from face-on to edge-on of 0.7, 0.6, 0.5 and 0.4 mag for the ugri passbands (estimating 0.3 mag of extinction in z band). We split the sample into 'bulgy' (early-type) and 'discy' (late-type) spirals using the SDSS fracdeV (or fDeV) parameter and show that the average face-on colour of 'bulgy' spirals is redder than the average edge-on colour of 'discy' spirals. This shows that the observed optical colour of a spiral galaxy is determined almost equally by the spiral type (via the bulge-disc ratio and stellar populations), and reddening due to dust. We find that both luminosity and spiral type affect the total amount of extinction, with discy spirals at Mr∼-21.5 mag having the most reddening - more than twice as much as both the lowest luminosity and most massive, bulge-dominated spirals. An increase in dust content is well known for more luminous galaxies, but the decrease of the trend for the most luminous has not been observed before and may be related to their lower levels of recent star formation. We compare our results with the latest dust attenuation models of Tuffs et al. We find that the model reproduces the observed trends reasonably well but overpredicts the amount of u-band attenuation in edge-on galaxies. This could be an inadequacy in the Milky Way extinction law (when applied to external galaxies), but more likely indicates the need for a wider range of dust-star geometries. We end by discussing the effects of dust on large galaxy surveys and emphasize that these effects will become important as we push to higher precision measurements of galaxy properties and their clustering. © 2010 The Authors. Journal compilation © 2010 RAS. Source

Wong O.I.,CSIRO | Wong O.I.,Yale University | Schawinski K.,Yale University | Kaviraj S.,Imperial College London | And 14 more authors.
Monthly Notices of the Royal Astronomical Society

We present a study of local post-starburst galaxies (PSGs) using the photometric and spectroscopic observations from the Sloan Digital Sky Survey and the results from the Galaxy Zoo project. We find that the majority of our local PSG population have neither early- nor late-type morphologies but occupy a well-defined space within the colour-stellar mass diagram, most notably, the low-mass end of the 'green valley' below the transition mass thought to be the mass division between low-mass star-forming galaxies and high-mass passively evolving bulge-dominated galaxies. Our analysis suggests that it is likely that local PSGs will quickly transform into 'red', low-mass early-type galaxies as the stellar morphologies of the 'green' PSGs largely resemble that of the early-type galaxies within the same mass range. We propose that the current population of PSGs represents a population of galaxies which is rapidly transitioning between the star-forming and the passively evolving phases. Subsequently, these PSGs will contribute towards the build-up of the low-mass end of the 'red sequence' once the current population of young stars fade and stars are no longer being formed. These results are consistent with the idea of 'downsizing' where the build-up of smaller galaxies occurs at later epochs. © 2012 CSIRO Monthly Notices of the Royal Astronomical Society © 2012 RAS. Source

Discover hidden collaborations