Entity

Time filter

Source Type

Tampere, Finland

Guo L.,National Institute of Allergy and Infectious Diseases | Junttila I.S.,University of Tampere | Junttila I.S.,Fimlab Laboratories | Paul W.E.,National Institute of Allergy and Infectious Diseases
Trends in Immunology | Year: 2012

Innate immune and differentiated T cells produce signature cytokines in response to cytokine stimulation. Optimal production requires stimulation by an NF-κB inducer, most commonly an interleukin (IL)-1 family member, and a STAT activator. Usually, there is linkage between the IL-1 family member, the activated STAT and the cytokines produced: IFNγ producers respond to the IL-1 family member, IL-18 and IL-12, a STAT4 activator; IL-13 producers respond to IL-33 (although for ILC2 cells this may be replaced by IL-25) and STAT5 activators; for cells producing IL-17A or IL-22, the combination is IL-1 and a STAT3 inducer. Cytokine-induced cytokine production may have broad significance in orchestrating innate responses to distinct infectious agents and in maintaining inflammatory responses after elimination of the inciting antigen. © 2012. Source


Hyoty H.,University of Tampere | Hyoty H.,Fimlab Laboratories
Pediatric Diabetes | Year: 2016

Environmental factors play an important role in the pathogenesis of type 1 diabetes and can determine if a genetically susceptible individual develops the disease. Increasing evidence suggest that among other exogenous agents certain virus infections can contribute to the beta-cell damaging process. Possible viral etiology of type 1 diabetes has been explored extensively but the final proof for causality is still lacking. Currently, the group of enteroviruses (EVs) is considered as the strongest candidate. These viruses have been found in the pancreas of type 1 diabetic patients, and epidemiological studies have shown more EV infections in diabetic patients than in controls. Prospective studies, such as the Type 1 Diabetes Prediction and Prevention (DIPP) study in Finland, are of fundamental importance in the evaluation viral effects as they can cover all stages of the beta-cell damaging process, including those preceding the initiation of the process. DIPP study has carried out the most comprehensive virological analyses ever done in prospective cohorts. This article summarizes the findings from these analyses and discuss them in the context of the existing other knowledge and the prospects for intervention studies with EV vaccines or antiviral drugs. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd Source


Palazzo G.,University of Bari | De Tullio D.,University of Bari | Magliulo M.,University of Bari | Mallardi A.,CNR Institute for Chemical and Physical Processes | And 6 more authors.
Advanced Materials | Year: 2015

A systematic study of the sensor response as a function of the Debye's length, the receptor charge, and the distance at which the binding event occurred addressed the basic functional mechanisms of a bio-electrolyte-gated organic field-effect transistors (EGOFET). A bio-EGOFET sensing platform comprising a biological layer at the interface between the OSC and the electrolyte was used to conduct the investigations. The biological layer was composed of a phospholipid (PL) bilayer covalently anchored to the OSC surface through a plasma-deposited (?COOH)-functionalized thin coating. It was observed that some of the anchored PLs were endowed with a biotin moiety, having an incomparably high binding affinity for streptavidin (SA) or avidin (AV) proteins. Source


Hytonen V.P.,Tampere University of Technology | Hytonen V.P.,Fimlab Laboratories | Wehrle-Haller B.,University of Geneva
Physical Chemistry Chemical Physics | Year: 2014

The dynamic regulation of cell-matrix adhesion is essential for tissue homeostasis and architecture, and thus numerous pathologies are linked to altered cell-extracellular matrix (ECM) interaction and ECM scaffold. The molecular machinery involved in cell-matrix adhesion is complex and involves both sensory and matrix-remodelling functions. In this review, we focus on how protein conformation controls the organization and dynamics of cell-matrix adhesion. The conformational changes in various adhesion machinery components are described, including examples from ECM as well as cytoplasmic proteins. The discussed mechanisms involved in the regulation of protein conformation include mechanical stress, post-translational modifications and allosteric ligand-binding. We emphasize the potential role of intrinsically disordered protein regions in these processes and discuss the role of protein networks and co-operative protein interactions in the formation and consolidation of cell-matrix adhesion and extracellular scaffolds. © 2014 the Partner Organisations. Source


Laurila E.M.,University of Tampere | Kallioniemi A.,University of Tampere | Kallioniemi A.,Fimlab Laboratories
Genes Chromosomes and Cancer | Year: 2013

In the past 10 years research on miRNAs has demonstrated their central role in regulating gene expression both in normal and diseased tissue. The expression of miRNAs is widely altered in cancer, leading to abnormal expression of the genes regulated by these miRNAs, and subsequently alterations in entire molecular networks and pathways. One especially interesting cancer-related miRNA is miR-31 which is frequently altered in a large variety of cancers. The functional role of miR-31 is extremely complex and miR-31 can hold both tumor suppressive and oncogenic roles in different tumor types. The phenotype caused by aberrant miR-31 expression seems to be strongly dependent on the endogenous expression levels. For example, in breast cancer loss of miR-31 expression is associated with high risk of metastases, whereas in colorectal cancer high miR-31 expression correlates with advanced disease stage. This review summarizes the complex expression patterns of miR-31 in human cancers, describes the variable phenotypes caused by altered miR-31 expression, and highlights the current knowledge on the genes targeted by miR-31. © 2013 Wiley Periodicals, Inc. Source

Discover hidden collaborations