Fidelity Systems Inc.

Gaithersburg, MD, United States

Fidelity Systems Inc.

Gaithersburg, MD, United States

Time filter

Source Type

PubMed | RAS A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, RAS Komarov Botanical Institute and Fidelity Systems Inc.
Type: Journal Article | Journal: Genome announcements | Year: 2015

A standard draft genome sequence of the white rot saprotrophic fungus Trametes hirsuta 072 (Basidiomycota, Polyporales) is presented. The genome sequence contains about 33.6 Mb assembled in 141 scaffolds with a G+C content of ~57.6%. The draft genome annotation predicts 14,598 putative protein-coding open reading frames (ORFs).


Lu Z.,Kennesaw State University | Altermann E.,Agresearch Ltd. | Breidt F.,North Carolina State University | Breidt F.,U.S. Department of Agriculture | Kozyavkin S.,Fidelity Systems Inc.
Applied and Environmental Microbiology | Year: 2010

Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage. Copyright © 2010, American Society for Microbiology. All Rights Reserved.


PubMed | Fidelity Systems Inc., Peter The Great St Petersburg Polytechnic University, Russian Academy of Sciences, Rutgers University and 2 more.
Type: | Journal: Virology | Year: 2016

Bacteriophage AR9 and its close relative PBS1 have been extensively used to construct early Bacillus subtilis genetic maps. Here, we present the 251,042bp AR9 genome, a linear, terminally redundant double-stranded DNA containing deoxyuridine instead of thymine. Multiple AR9 genes are interrupted by non-coding sequences or sequences encoding putative endonucleases. We show that these sequences are group I and group II self-splicing introns. Eight AR9 proteins are homologous to fragments of bacterial RNA polymerase (RNAP) subunits /. These proteins comprise two sets of paralogs of RNAP largest subunits, with each paralog encoded by two disjoint phage genes. Thus, AR9 is a phiKZ-related giant phage that relies on two multisubunit viral RNAPs to transcribe its genome independently of host transcription apparatus. Purification of one of PBS1/AR9 RNAPs has been reported previously, which makes AR9 a promising object for further studies of RNAP evolution, assembly and mechanism.


Beloglazova N.G.,Russian Academy of Sciences | Fabani M.M.,University of Manchester | Polushin N.N.,Fidelity Systems Inc. | Sil'nikov V.V.,Russian Academy of Sciences | And 3 more authors.
Journal of Nucleic Acids | Year: 2011

Design of site-selective artificial ribonucleases (aRNases) is one of the most challenging tasks in RNA targeting. Here, we designed and studied oligonucleotide-based aRNases containing multiple imidazole residues in the catalytic part and systematically varied structure of cleaving constructs. We demonstrated that the ribonuclease activity of the conjugates is strongly affected by the number of imidazole residues in the catalytic part, the length of a linker between the catalytic imidazole groups of the construct and the oligonucleotide, and the type of anchor group, connecting linker structure and the oligonucleotide. Molecular modeling of the most active aRNases showed that preferable orientation(s) of cleaving constructs strongly depend on the structure of the anchor group and length of the linker. The inclusion of deoxyribothymidine anchor group significantly reduced the probability of cleaving groups to locate near the cleavage site, presumably due to a stacking interaction with the neighbouring nucleotide residue. Altogether the obtained results show that dynamics factors play an important role in site-specific RNA cleavage. Remarkably high cleavage activity was displayed by the conjugates with the most flexible and extended cleaving construct, which presumably provides a better opportunity for imidazole residues to be correctly positioned in the vicinity of scissile phosphodiester bond. © 2011 Natalia G. Beloglazova et al.


Kropinski A.M.,Public Health Agency of Canada | Kropinski A.M.,University of Guelph | Arutyunov D.,University of Alberta | Foss M.,NRC Institute for Biological Sciences | And 9 more authors.
Applied and Environmental Microbiology | Year: 2011

Campylobacter jejuni continues to be the leading cause of bacterial food-borne illness worldwide, so improvements to current methods used for bacterial detection and disease prevention are needed. We describe here the genome and proteome of C. jejuni bacteriophage NCTC 12673 and the exploitation of its receptor-binding protein for specific bacterial detection. Remarkably, the 135-kb Myoviridae genome of NCTC 12673 differs greatly from any other proteobacterial phage genome described (including C. jejuni phages CP220 and CPt10) and instead shows closest homology to the cyanobacterial T4-related myophages. The phage genome contains 172 putative open reading frames, including 12 homing endonucleases, no visible means of packaging, and a putative trans-splicing intein. The phage DNA appears to be strongly associated with a protein that interfered with PCR amplification and estimation of the phage genome mass by pulsed-field gel electrophoresis. Identification and analyses of the receptor-binding protein (Gp48) revealed features common to the Salmonella enterica P22 phage tailspike protein, including the ability to specifically recognize a host organism. Bacteriophage receptor-binding proteins may offer promising alternatives for use in pathogen detection platforms. © 2011, American Society for Microbiology.


PubMed | Novartis and Fidelity Systems Inc.
Type: Journal Article | Journal: Genome announcements | Year: 2015

A new Lactobacillus acidophilus strain, FSI4, isolated from yogurt, was isolated and sequenced in our laboratory. Our data, although supportive of previous conclusions regarding the remarkable stability of L. acidophilus species, indicate accumulating mutations in commercial L.acidophilus strains that warrant further study of the effect of damaged genes on the competitiveness of these bacteria in gut microbiota.


Pavlov A.R.,Fidelity Systems Inc. | Pavlova N.V.,Fidelity Systems Inc. | Kozyavkin S.A.,Fidelity Systems Inc. | Slesarev A.I.,Fidelity Systems Inc.
Biochemistry | Year: 2012

We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 °C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases. © 2012 American Chemical Society.


We have previously introduced a general kinetic approach for comparative study of processivity, thermostability, and resistance to inhibitors of DNA polymerases [Pavlov, A. R., et al. (2002) Proc. Natl. Acad. Sci. U.S.A.99, 13510-13515]. The proposed method was successfully applied to characterize hybrid DNA polymerases created by fusing catalytic DNA polymerase domains with various sequence-nonspecific DNA binding domains. Here we use the developed kinetic analysis to assess basic parameters of DNA elongation by DNA polymerases and to further study the interdomain interactions in both previously constructed and new chimeric DNA polymerases. We show that connecting helix-hairpin-helix (HhH) domains to catalytic polymerase domains can increase thermostability, not only of DNA polymerases from extremely thermophilic species but also of the enzyme from a faculatative thermophilic bacterium Bacillus stearothermophilus. We also demonstrate that addition of Topo V HhH domains extends efficient DNA synthesis by chimerical polymerases up to 105 C by maintaining processivity of DNA synthesis at high temperatures. We found that reversible high-temperature structural transitions in DNA polymerases decrease the rates of binding of these enzymes to the templates. Furthermore, activation energies and pre-exponential factors of the Arrhenius equation suggest that the mechanism of electrostatic enhancement of diffusion-controlled association plays a minor role in binding of templates to DNA polymerases.

Loading Fidelity Systems Inc. collaborators
Loading Fidelity Systems Inc. collaborators