Lorrez-le-Bocage-Préaux, France
Lorrez-le-Bocage-Préaux, France

Time filter

Source Type

PubMed | FHU TRANSLAD, Plateforme Of Bioinformatique Of Linstitut Imagine, Lyon University Hospital Center, Paris-Sorbonne University and University of Paris Descartes
Type: Journal Article | Journal: American journal of medical genetics. Part A | Year: 2015

Intellectual disability is a neurodevelopmental disorder of impaired adaptive skills and low intelligence quotient. The overall prevalence is estimated at 2-3% in the general population with extreme clinical and genetic heterogeneity, and it has been associated with possibly causative mutations in more than 700 identified genes. In a recent review, among over 100 X-linked intellectual disability causative genes, eight were reported as awaiting replication. Exome sequencing in a large family identified a missense mutation in RPL10 highly suggestive of X-linked intellectual disability. Herein, we report on the clinical description of four affected males. All patients presented apparent intellectual disability (4/4), psychomotor delay (4/4) with syndromic features including amniotic fluid excess (3/4), microcephaly (2/4), urogenital anomalies (3/4), cerebellar syndrome (2/4), and facial dysmorphism. In the literature, two mutations were reported in three families with affected males presenting with autism. This report confirms the implication of RPL10 mutations in neurodevelopmental disorders and extends the associated clinical spectrum from autism to syndromic intellectual disability.


Callier P.,University of Geneva | Callier P.,University of Burgundy | Calvel P.,University of Geneva | Matevossian A.,Sloan Kettering Cancer Center | And 33 more authors.
PLoS Genetics | Year: 2014

The Hedgehog (Hh) family of secreted proteins act as morphogens to control embryonic patterning and development in a variety of organ systems. Post-translational covalent attachment of cholesterol and palmitate to Hh proteins are critical for multimerization and long range signaling potency. However, the biological impact of lipid modifications on Hh ligand distribution and signal reception in humans remains unclear. In the present study, we report a unique case of autosomal recessive syndromic 46,XY Disorder of Sex Development (DSD) with testicular dysgenesis and chondrodysplasia resulting from a homozygous G287V missense mutation in the hedgehog acyl-transferase (HHAT) gene. This mutation occurred in the conserved membrane bound O-acyltransferase (MBOAT) domain and experimentally disrupted the ability of HHAT to palmitoylate Hh proteins such as DHH and SHH. Consistent with the patient phenotype, HHAT was found to be expressed in the somatic cells of both XX and XY gonads at the time of sex determination, and Hhat loss of function in mice recapitulates most of the testicular, skeletal, neuronal and growth defects observed in humans. In the developing testis, HHAT is not required for Sertoli cell commitment but plays a role in proper testis cord formation and the differentiation of fetal Leydig cells. Altogether, these results shed new light on the mechanisms of action of Hh proteins. Furthermore, they provide the first clinical evidence of the essential role played by lipid modification of Hh proteins in human testicular organogenesis and embryonic development. © 2014 Callier et al.

Loading FHU TRANSLAD collaborators
Loading FHU TRANSLAD collaborators