Entity

Time filter

Source Type

Germany

Disclosed are a method of correcting a control logic of a selective catalytic reduction (SCR) catalyst and an exhaust system. The control logic may be adapted to calculate an injection amount of a reducing agent for the SCR catalyst at the least. The method may include detecting input variables including temperature of the SCR catalyst and exhaust flow rate, discretizing the input variables, standardizing the discretized input variables, determining whether the discretized input variables are within a correction range, and correcting the control logic of the SCR catalyst if the discretized input variables are within the correction range.


Patent
FEV GmbH | Date: 2013-07-23

The invention relates to the creation of an experimental plan and the performance of a series of measurements, comprising the determination of operating data of a drive device to he tested and belonging to a vehicle by means of an automated statistical experimental plan (DoE), wherein the experimental plan includes at least the following steps: identification of one or more target variables which the drive device has to meet during test operation, and narrowing relevant values to the one or more target variables, assignment of one or more actuating variables to the drive device with one or more target variables and automated creation of the experimental plan on the basis of at least two target variables to be met.


Disclosed are a method of determining a correcting logic for a reacting model of an SCR catalyst, a method of correcting parameters of the reacting model of the SCR catalyst and an exhaust system to which the methods are applied. The reacting model of the SCR catalyst is defined by m parameters and has n input variables, where m and n are natural numbers with n smaller than m. The reacting model of the SCR catalyst may be adapted to predict nitrogen oxide (NOx) concentration at a downstream of the SCR catalyst at the least.


A method of determining suitability of correction for a control logic of a selective catalytic reduction (SCR) catalyst, may include determining a suitability function of the correction based on a previous error and a current error when the correction has been performed, determining a suitability coefficient based on the suitability function of the correction, determining whether the correction may be suitable based on the number of corrections and the suitability coefficient, and resetting the control logic when the correction may be not suitable.


Method for the regeneration of a carbon particulate filter

Discover hidden collaborations