Fels Institute for Cancer Research and Molecular Biology

Philadelphia, PA, United States

Fels Institute for Cancer Research and Molecular Biology

Philadelphia, PA, United States
SEARCH FILTERS
Time filter
Source Type

Mtango N.R.,Fels Institute for Cancer Research and Molecular Biology | Vandevoort C.A.,University of California at Davis | Latham K.E.,Temple University
Gene Expression Patterns | Year: 2011

Two essential aspects of mammalian development are the progressive specialization of cells toward different lineages, and the maintenance of progenitor cells that will give rise to the differentiated components of each tissue and also contribute new cells as older cells die or become injured. The transition from totipotentiality to pluripotentiality, to multipotentiality, to monopotentiality, and then to differentiation is a continuous process during development. The ontological relationship between these different stages is not well understood. We report for the first time an ontological survey of expression of 45 putative "stemness" and "pluripotency" genes in rhesus monkey oocytes and preimplantation stage embryos, and comparison to the expression in the inner cell mass, trophoblast stem cells, and a rhesus monkey (ORMES6) embryonic stem cell line. Our results reveal that some of these genes are not highly expressed in all totipotent or pluripotent cell types. Some are predominantly maternal mRNAs present in oocytes and embryos before transcriptional activation, and diminishing before the blastocyst stage. Others are well expressed in morulae or early blastocysts, but are poorly expressed in later blastocysts or ICMs. Also, some of the genes employed to induce pluripotent stem cells from somatic cells (iPS genes) appear unlikely to play major roles as stemness or pluripotency genes in normal embryos. © 2010 Elsevier B.V. All rights reserved.


Lee Y.S.,Fels Institute for Cancer Research and Molecular Biology | Vandevoort C.A.,California National Primate Research Center | Vandevoort C.A.,University of California at Davis | Gaughan J.P.,Temple University | And 4 more authors.
American Journal of Physiology - Endocrinology and Metabolism | Year: 2011

The elaboration of a quality oocyte is integrally linked to the correct developmental progression of cumulus cell phenotype. In humans and nonhuman primates, oocyte quality is diminished with in vitro maturation. To determine the changes in gene expression in rhesus monkey cumulus cells (CC) that occur during the final day prior to oocyte maturation and how these changes differ between in vitro (IVM) and in vivo maturation (VVM), we completed a detailed comparison of transcriptomes using the Affymetrix gene array. We observed a large number of genes differing in expression when comparing IVM-CC and VVM-CC directly but a much larger number of differences when comparing the transitions from the prematuration to the post-IVM and post-VVM states. We observed a truncation or delay in the normal pattern of gene regulation but also remarkable compensatory changes in gene expression during IVM. Among the genes affected by IVM are those that contribute to productive cell-cell interactions between cumulus cell and oocyte and between cumulus cells. Numerous genes involved in lipid metabolism are incorrectly regulated during IVM, and the synthesis of sex hormones appears not to be suppressed during IVM. We identified a panel of 24 marker genes, the expression of which should provide the foundation for understanding how IVM can be improved for monitoring IVM conditions and for diagnosing oocyte quality. © 2011 by the American Physiological Society.


Sapienza C.,Fels Institute for Cancer Research and Molecular Biology | Lee J.,Temple University | Powell J.,Fels Institute for Cancer Research and Molecular Biology | Erinle O.,Fels Institute for Cancer Research and Molecular Biology | And 4 more authors.
Epigenetics | Year: 2011

We identified potential epigenetic biomarkers for chronic kidney disease progression by comparing site-specific DNA methylation levels in more than 14,000 genes between African American and Hispanic diabetes patients with end stage renal disease (ESRD) and diabetes patients without nephropathy. We identified 187 genes that are differentially methylated between the two groups on at least two CpG sites in each gene in DNA extracted from saliva. Of the 187 genes whose mean methylation levels differed between the two groups, 39 genes or closely related gene family members, have been reported to be involved in kidney development or diabetic nephropathy, per se, or have been associated with dialysis-induced changes in gene expression in peripheral blood cells. The fact that such a substantial fraction (21%) of the 187 candidate genes have been implicated previously through genome association or transcription profiling studies suggests strongly that the DNA methylation differences we observe are associated with disease predisposition and/ or treatment. The fact that these nephropathy and/or dialysis-associated differences between patients were identified in DNA extracted from saliva offers proof-of-principle that inter-individual epigenetic differences may prove useful as predictive biomarkers of disease susceptibility. © 2011 Landes Bioscience.


Kang A.D.,Fels Institute for Cancer Research and Molecular Biology | Kang A.D.,Armed forces Radiobiology Research Institute | Cosenza S.C.,Fels Institute for Cancer Research and Molecular Biology | Bonagura M.,Fels Institute for Cancer Research and Molecular Biology | And 3 more authors.
PLoS ONE | Year: 2013

Development of radio-protective agents that are non-toxic is critical in light of ever increasing threats associated with proliferation of nuclear materials, terrorism and occupational risks associated with medical and space exploration. In this communication, we describe the discovery, characterization and mechanism of action of ON01210.Na, which effectively protects mouse and human bone marrow cells from radiation-induced damage both in vitro and in vivo. Our results show that treatment of normal fibroblasts with ON01210.Na before and after exposure to ionizing radiation provides dose dependent protection against radiation-induced damage. Treatment of mice with ON01210.Na prior to radiation exposure was found to result in a more rapid recovery of their hematopoietic system. The mechanistic studies described here show that ON01210.Na manifests its protective effects through the up-regulation of PI3-Kinase/AKT pathways in cells exposed to radiation. These results suggest that ON 01210.Na is a safe and effective radioprotectant and could be a novel agent for use in radiobiological disasters. © 2013 Kang et al.


PubMed | University of Pennsylvania, Fels Institute for Cancer Research and Molecular Biology and Temple University
Type: Journal Article | Journal: Human molecular genetics | Year: 2015

We have identified a novel molecular phenotype that defines a subgroup of newborns who have highly disrupted epigenomes. We profiled DNA methylation in cord blood of 114 children selected from the lowest and highest quintiles of the birth weight distribution (irrespective of their mode of conception) at 96 CpG sites in genes we have found previously to be related to birth weight or growth and metabolism. We identified those individuals in each group who differed from the mean of the distribution by the greatest magnitude at each site and for the largest number of sites. Such outlier individuals differ substantially from the rest of the group in having highly disrupted methylation levels at many CpG sites. We find that children from the lowest quintile of the birth weight distribution have a significantly greater number of disrupted CpGs than children from the highest quintile of the birth weight distribution. Among children from the lowest quintile of the birth weight distribution, outlier individuals are significantly more common among children conceived in vitro than children conceived in vivo. These observations are novel and potentially important because they associate a molecular phenotype (multiple and large DNA methylation differences) in normal somatic tissues (cord blood) with both a prenatal exposure (conception in vitro) and a clinically important outcome (low birth weight). These observations suggest that some individuals are more susceptible to environmentally mediated epigenetic alterations than others.


Garriga J.,Fels Institute for Cancer Research and Molecular Biology | Grana X.,Fels Institute for Cancer Research and Molecular Biology | Grana X.,Temple University
BMC Research Notes | Year: 2014

Background: CDK9 is the catalytic subunit of the Positive Transcription Elongation Factor b (P-TEFb), which phosphorylates the CTD of RNAPII and negative elongation factors enabling for productive elongation after initiation. CDK9 associates with T-type cyclins and cyclin K and its activity is tightly regulated in cells at different levels. CDK9 is also the catalytic subunit of TAK (Tat activating Kinase), essential for HIV1 replication. Because of CDK9′s potential as a therapeutic target in AIDS, cancer, inflammation, and cardiomyophathy it is important to understand the consequences of CDK9 inhibition. A previous gene expression profiling study performed with human glioblastoma T98G cells in which CDK9 activity was inhibited either with a dominant negative mutant form of CDK9 (dnCDK9) or the pharmacological inhibitor Flavopiridol unveiled striking differences in gene expression effects. In the present report we extended these studies by (1) using both immortalized normal human fibroblasts and primary human astrocytes, (2) eliminating potential experimental variability due to transduction methodology and (3) also modulating CDK9 activity with siRNA. Findings. Striking differences in the effects on gene expression resulting from the strategy used to inhibit CDK9 activity (dnCDK9 or FVP) remain even when potential variability due to viral transduction is eliminated. siRNA mediated CDK9 knockdown in human fibroblasts and astrocytes efficiently reduced CDK9 expression and led to potent changes in gene expression that exhibit little correlation with the effects of dnCDK9 or FVP. Interestingly, HEXIM1 a validated CDK9 target gene, was found to be potently downregulated by dnCDK9, FVP and siCDK9, but the cluster of genes with expression profiles similar to HEXIM1 was small. Finally, cluster analysis of all treatments revealed higher correlation between treatments than cell type origin. Conclusion: The nature of the strategy used to inhibit CDK9 profoundly affects the patterns of gene expression resulting from CDK9 inhibition. These results suggest multiple variables that affect outcome, including kinetics of inhibition, potency, off-target effects, and selectivity issues. This is particularly important when considering CDK9 as a potential target for therapeutic intervention. © 2014 Garriga and Graña; licensee BioMed Central Ltd.


Cornwell W.D.,Fels Institute for Cancer Research and Molecular Biology | Kim V.,Temple University | Song C.,Fels Institute for Cancer Research and Molecular Biology | Rogers T.J.,Fels Institute for Cancer Research and Molecular Biology
Seminars in Respiratory and Critical Care Medicine | Year: 2010

Chronic obstructive pulmonary disease is characterized by an abnormal persistent inflammatory response to noxious environmental stimuli, most commonly cigarette smoke. Although cigarette smoking elicits airway inflammation in all of those who smoke, persistent inflammation and clinically significant COPD occurs in only a minority of smokers. The pathogenesis of COPD involves the recruitment and regulation of neutrophils, macrophages, and lymphocytes to the lung, as well as the induction of oxidative stress, all of which result in lung parenchymal destruction and airway remodeling. Recent research has generated a greater understanding of the mechanisms responsible for COPD development, including new concepts in T cell biology and the increasing recognition that the processes governing lung cell apoptosis are upregulated. We are also starting to understand the reasons for continued inflammation even after smoking cessation, which accelerates the rate of lung function decline in COPD. Herein we review our current knowledge of the inflammatory pathways involved in COPD pathogenesis, as well as newer concepts that have begun to unfold in recent years. © 2010 by Thieme Medical Publishers, Inc.


Kurimchak A.,Fels Institute for Cancer Research and Molecular Biology | Grana X.,Fels Institute for Cancer Research and Molecular Biology | Grana X.,Temple University
Gene | Year: 2012

Cellcycle progression is negatively regulated by the retinoblastoma family of pocket proteins and CDK inhibitors (CKIs). In contrast, CDKs promote progression through multiple phases of the cell cycle. One prominent way by which CDKs promote cell cycle progression is by inactivation of pocket proteins via hyperphosphorylation. Reactivation of pocket proteins to halt cell cycle progression requires dephosphorylation of multiple CDK-phosphorylated sites and is accomplished by PP2A and PP1 serine/threonine protein phosphatases. The same phosphatases are also implicated in dephosphorylation of multiple CDK substrates as cells exit mitosis and reenter the G1 phase of the cell cycle. This review is primarily focused on the role of PP2A and PP1 in the activation of pocket proteins during the cell cycle and in response to signaling cues that trigger cell cycle exit. Other functions of PP2A during the cell cycle will be discussed in brief, as comprehensive reviews on this topic have been published recently (De Wulf et al., 2009; Wurzenberger and Gerlich, 2011). © 2012 Elsevier B.V.


Bagashev A.,Fels Institute for Cancer Research and Molecular Biology | Sawaya B.E.,Fels Institute for Cancer Research and Molecular Biology | Sawaya B.E.,Temple University
Virology Journal | Year: 2013

Nearly 50% of HIV-infected individuals suffer from some form of HIV-associated neurocognitive disorders (HAND). HIV-1 Tat (a key HIV transactivator of transcription) protein is one of the first HIV proteins to be expressed after infection occurs and is absolutely required for the initiation of the HIV genome transcription. In addition to its canonical functions, various studies have shown the deleterious role of HIV-1 Tat in the development and progression of HAND. Within the CNS, only specific cell types can support productive viral replication (astrocytes and microglia), however Tat protein can be released form infected cells to affects HIV non-permissive cells such as neurons. Therefore, in this review, we will summarize the functions of HIV-1 Tat proteins in neural cells and its ability to promote HAND. © 2013 Bagashev and Sawaya; licensee BioMed Central Ltd.


PubMed | Fels Institute for Cancer Research and Molecular Biology and University of Alabama
Type: | Journal: Oncotarget | Year: 2017

The Gadd45a stress sensor gene is a member in the Gadd45 family of genes that includes Gadd45b & Gadd45g. To investigate the effect of GADD45A in the development of CML, syngeneic wild type lethally irradiated mice were reconstituted with either wild type or Gadd45a null myeloid progenitors transduced with a retroviral vector expressing the 210-kD BCR-ABL fusion oncoprotein. Loss of Gadd45a was observed to accelerate BCR-ABL driven CML resulting in the development of a more aggressive disease, a significantly shortened median mice survival time, and increased BCR-ABL expressing leukemic stem/progenitor cells (GFP+Lin- cKit+Sca+). GADD45A deficient progenitors expressing BCR-ABL exhibited increased proliferation and decreased apoptosis relative to WT counterparts, which was associated with enhanced PI3K-AKT-mTOR-4E-BP1 signaling, upregulation of p30C/EBP expression, and hyper-activation of p38 and Stat5. Furthermore, Gadd45a expression in samples obtained from CML patients was upregulated in more indolent chronic phase CML samples and down regulated in aggressive accelerated phase CML and blast crisis CML. These results provide novel evidence that Gadd45a functions as a suppressor of BCR/ABL driven leukemia and may provide a unique prognostic marker of CML progression.

Loading Fels Institute for Cancer Research and Molecular Biology collaborators
Loading Fels Institute for Cancer Research and Molecular Biology collaborators