Burr Ridge, IL, United States
Burr Ridge, IL, United States

Time filter

Source Type

Dailey H.A.,University of Georgia | Dailey T.A.,University of Georgia | Gerdes S.,Fellowship for Interpretation of Genomes | Jahn D.,TU Braunschweig | And 3 more authors.
Microbiology and Molecular Biology Reviews | Year: 2017

The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzymestep process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gramnegative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. © 2017 American Society for Microbiology. All Rights Reserved.


Zhang Y.,Sanford Burnham Institute for Medical Research | Zhang Y.,Woods Hole Oceanographic Institution | Zagnitko O.,Fellowship for Interpretation of Genomes | Rodionova I.,Sanford Burnham Institute for Medical Research | And 2 more authors.
PLoS Computational Biology | Year: 2011

Function diversification in large protein families is a major mechanism driving expansion of cellular networks, providing organisms with new metabolic capabilities and thus adding to their evolutionary success. However, our understanding of the evolutionary mechanisms of functional diversity in such families is very limited, which, among many other reasons, is due to the lack of functionally well-characterized sets of proteins. Here, using the FGGY carbohydrate kinase family as an example, we built a confidently annotated reference set (CARS) of proteins by propagating experimentally verified functional assignments to a limited number of homologous proteins that are supported by their genomic and functional contexts. Then, we analyzed, on both the phylogenetic and the molecular levels, the evolution of different functional specificities in this family. The results show that the different functions (substrate specificities) encoded by FGGY kinases have emerged only once in the evolutionary history following an apparently simple divergent evolutionary model. At the same time, on the molecular level, one isofunctional group (L-ribulokinase, AraB) evolved at least two independent solutions that employed distinct specificity-determining residues for the recognition of a same substrate (L-ribulose). Our analysis provides a detailed model of the evolution of the FGGY kinase family. It also shows that only combined molecular and phylogenetic approaches can help reconstruct a full picture of functional diversifications in such diverse families. © 2011 Zhang et al.


Davis J.J.,University of Illinois at Urbana - Champaign | Xia F.,Argonne National Laboratory | Overbeek R.A.,Fellowship for Interpretation of Genomes | Olsen G.J.,University of Illinois at Urbana - Champaign
International Journal of Systematic and Evolutionary Microbiology | Year: 2013

The tree of life is paramount for achieving an integrated understanding of microbial evolution and the relationships between physiology, genealogy and genomics. It provides the framework for interpreting environmental sequence data, whether applied to microbial ecology or to human health. However, there remain many instances where there is ambiguity in our understanding of the phylogeny of major lineages, and/or confounding nomenclature. Here we apply recent genomic sequence data to examine the evolutionary history of members of the classes Mollicutes (phylum Tenericutes) and Erysipelotrichia (phylum Firmicutes). Consistent with previous analyses, we find evidence of a specific relationship between them in molecular phylogenies and signatures of the 16S rRNA, 23S rRNA, ribosomal proteins and aminoacyl-tRNA synthetase proteins. Furthermore, by mapping functions over the phylogenetic tree we find that the erysipelotrichia lineages are involved in various stages of genomic reduction, having lost (often repeatedly) a variety of metabolic functions and the ability to form endospores. Although molecular phylogeny has driven numerous taxonomic revisions, we find it puzzling that the most recent taxonomic revision of the phyla Firmicutes and Tenericutes has further separated them into distinct phyla, rather than reflecting their common roots. © 2013 IUMS.


Overbeek R.,Fellowship for Interpretation of Genomes | Overbeek R.,Argonne National Laboratory | Olson R.,Argonne National Laboratory | Olson R.,University of Chicago | And 19 more authors.
Nucleic Acids Research | Year: 2014

In 2004, the SEED (http://pubseed.theseed.org/) was created to provide consistent and accurate genome annotations across thousands of genomes and as a platform for discovering and developing de novo annotations. The SEED is a constantly updated integration of genomic data with a genome database, web front end, API and server scripts. It is used by many scientists for predicting gene functions and discovering new pathways. In addition to being a powerful database for bioinformatics research, the SEED also houses subsystems (collections of functionally related protein families) and their derived FIGfams (protein families), which represent the core of the RAST annotation engine (http://rast.nmpdr.org/). When a new genome is submitted to RAST, genes are called and their annotations are made by comparison to the FIGfam collection. If the genome is made public, it is then housed within the SEED and its proteins populate the FIGfam collection. This annotation cycle has proven to be a robust and scalable solution to the problem of annotating the exponentially increasing number of genomes. To date, >12 000 users worldwide have annotated >60 000 distinct genomes using RAST. Here we describe the interconnectedness of the SEED database and RAST, the RAST annotation pipeline and updates to both resources. © 2013 The Author(s). Published by Oxford University Press.


Sorci L.,Sanford Burnham Institute for Medical Research | Blaby I.,University of Florida | De Ingeniis J.,Sanford Burnham Institute for Medical Research | Gerdes S.,Fellowship for Interpretation of Genomes | And 3 more authors.
Journal of Biological Chemistry | Year: 2010

Enzymes involved in the last steps of NAD biogenesis, nicotinate mononucleotide adenylyltransferase (NadD) and NAD synthetase (NadE), are conserved and essential in most bacterial species and are established targets for antibacterial drug development. Our genomics-based reconstruction of NAD metabolism in the emerging pathogen Acinetobacter baumannii revealed unique features suggesting an alternative targeting strategy. Indeed, genomes of all analyzed Acinetobacter species do not encode NadD, which is functionally replaced by its distant homolog NadM. We combined bioinformatics with genetic and biochemical techniques to elucidate this and other important features of Acinetobacter NAD metabolism using a model (nonpathogenic) strain Acinetobacter baylyi sp. ADP1. Thus, a comparative kinetic characterization of PncA, PncB, and NadV enzymes allowed us to suggest distinct physiological roles for the two alternative, deamidating and nondeamidating, routes of nicotinamide salvage/recycling. The role of the NiaP transporter in both nicotinate and nicotinamide salvage was confirmed. The nondeamidating route was shown to be transcriptionally regulated by an ADP-ribose-responsive repressor NrtR. The NadM enzyme was shown to possess dual substrate specificity toward both nicotinate and nicotinamide mononucleotide substrates, which is consistent with its essential role in all three routes of NAD biogenesis, de novo synthesis as well as the two salvage pathways. The experimentally confirmed unconditional essentiality of nadM provided support for the choice of the respective enzyme as a drug target. In contrast, nadE, encoding a glutamine-dependent NAD synthetase, proved to be dispensable when the nondeamidating salvage pathway functioned as the only route of NAD biogenesis. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.


Wattam A.R.,Virginia Polytechnic Institute and State University | Abraham D.,Virginia Polytechnic Institute and State University | Dalay O.,Virginia Polytechnic Institute and State University | Disz T.L.,University of Chicago | And 28 more authors.
Nucleic Acids Research | Year: 2014

The Pathosystems Resource Integration Center (PATRIC) is the all-bacterial Bioinformatics Resource Center (BRC) (http://www.patricbrc.org). A joint effort by two of the original National Institute of Allergy and Infectious Diseases-funded BRCs, PATRIC provides researchers with an online resource that stores and integrates a variety of data types [e.g. genomics, transcriptomics, protein-protein interactions (PPIs), three-dimensional protein structures and sequence typing data] and associated metadata. Datatypes are summarized for individual genomes and across taxonomic levels. All genomes in PATRIC, currently more than 10 000, are consistently annotated using RAST, the Rapid Annotations using Subsystems Technology. Summaries of different data types are also provided for individual genes, where comparisons of different annotations are available, and also include available transcriptomic data. PATRIC provides a variety of ways for researchers to find data of interest and a private workspace where they can store both genomic and gene associations, and their own private data. Both private and public data can be analyzed together using a suite of tools to perform comparative genomic or transcriptomic analysis. PATRIC also includes integrated information related to disease and PPIs. All the data and integrated analysis and visualization tools are freely available. This manuscript describes updates to the PATRIC since its initial report in the 2007 NAR Database Issue. © 2013 The Author(s). Published by Oxford University Press.


Boynton T.O.,University of Georgia | Gerdes S.,Fellowship for Interpretation of Genomes | Craven S.H.,University of Georgia | Neidle E.L.,University of Georgia | And 2 more authors.
Applied and Environmental Microbiology | Year: 2011

Tetrapyrroles are ubiquitous molecules in nearly all living organisms. Heme, an iron-containing tetrapyrrole, is widely distributed in nature, including most characterized aerobic and facultative bacteria. A large majority of bacteria that contain heme possess the ability to synthesize it. Despite this capability and the fact that the biosynthetic pathway has been well studied, enzymes catalyzing at least three steps have remained "missing" in many bacteria. In the current work, we have employed comparative genomics via the SEED genomic platform, coupled with experimental verification utilizing Acinetobacter baylyi ADP1, to identify one of the missing enzymes, a new protoporphyrinogen oxidase, the penultimate enzyme in heme biosynthesis. COG1981 was identified by genomic analysis as a candidate protein family for the missing enzyme in bacteria that lacked HemG or HemY, two known protoporphyrinogen oxidases. The predicted amino acid sequence of COG1981 is unlike those of the known enzymes HemG and HemY, but in some genomes, the gene encoding it is found neighboring other heme biosynthetic genes. When the COG1981 gene was deleted from the genome of A. baylyi, a bacterium that lacks both hemG and hemY, the organism became auxotrophic for heme. Cultures accumulated porphyrin intermediates, and crude cell extracts lacked protoporphyrinogen oxidase activity. The heme auxotrophy was rescued by the presence of a plasmid-borne protoporphyrinogen oxidase gene from a number of different organisms, such as hemG from Escherichia coli, hemY from Myxococcus xanthus, or the human gene for protoporphyrinogen oxidase. © 2011, American Society for Microbiology.


Devoid S.,Argonne National Laboratory | Overbeek R.,Fellowship for Interpretation of Genomes | DeJongh M.,Hope College | Vonstein V.,Fellowship for Interpretation of Genomes | And 2 more authors.
Methods in Molecular Biology | Year: 2013

Over the past decade, genome-scale metabolic models have proven to be a crucial resource for predicting organism phenotypes from genotypes. These models provide a means of rapidly translating detailed knowledge of thousands of enzymatic processes into quantitative predictions of whole-cell behavior. Until recently, the pace of new metabolic model development was eclipsed by the pace at which new genomes were being sequenced. To address this problem, the RAST and the Model SEED framework were developed as a means of automatically producing annotations and draft genome-scale metabolic models. In this chapter, we describe the automated model reconstruction process in detail, starting from a new genome sequence and finishing on a functioning genome-scale metabolic model. We break down the model reconstruction process into eight steps: submitting a genome sequence to RAST, annotating the genome, curating the annotation, submitting the annotation to Model SEED, reconstructing the core model, generating the draft biomass reaction, auto-completing the model, and curating the model. Each of these eight steps is documented in detail. © Springer Science+Business Media, LLC 2013.


Dailey T.A.,University of Georgia | Boynton T.O.,University of Georgia | Albetel A.-N.,University of Georgia | Gerdes S.,Fellowship for Interpretation of Genomes | And 2 more authors.
Journal of Biological Chemistry | Year: 2010

Here we identify a previously undescribed protein, HemQ, that is required for heme synthesis in Gram-positive bacteria. Wehave characterized HemQ from Bacillus subtilis and a number of Actinobacteria. HemQ is a multimeric heme-binding protein. Spectroscopic studies indicate that this heme is high spin ferric iron and is ligated by a conserved histidine with the sixth coordination site available for binding a small molecule. The presence of HemQ along with the terminal two pathway enzymes, protoporphyrinogen oxidase (HemY) and ferrochelatase, is required to synthesize heme in vivo and in vitro. Although the exact role played by HemQ remains to be characterized, to be fully functional in vitro it requires the presence of a bound heme. HemQ possesses minimal peroxidase activity, but as a catalase it has a turnover of over 10 4 min-1. We propose that this activity may be required to eliminate hydrogen peroxide that is generated by each turnover of HemY. Given the essential nature of heme synthesis and the restricted distribution of HemQ, this protein is a potential antimicrobial target for pathogens such as Mycobacterium tuberculosis. © 2010 by The American Society for Biochemistry and Molecular Biology, Inc.


Zaborin A.,University of Chicago | Gerdes S.,Fellowship for Interpretation of Genomes | Holbrook C.,University of Chicago | Liu D.C.,University of Chicago | And 2 more authors.
PLoS ONE | Year: 2012

The gut during critical illness represents a complex ecology dominated by the presence of healthcare associated pathogens, nutrient scarce conditions, and compensatory host stress signals. We have previously identified key environmental cues, opioids and phosphate depletion that independently activate the virulence of Pseudomonas aeruginosa. Opioids induce quinolone signal production (PQS), whereas phosphate depletion leads to a triangulated response between MvfR-PQS, pyoverdin, and phosphosensory/phosphoregulatory systems (PstS-PhoB). Yet how P. aeruginosa manages its response to opioids during nutrient scarce conditions when growth is limited and a quorum is unlikely to be achieved is important in the context of pathogenesis in gut during stress. To mimic this environment, we created nutrient poor conditions and exposed P. aeruginosa PAO1 to the specific k-opioid receptor agonist U-50,488. Bacterial cells exposed to the k-opioid expressed a striking increase in virulence- and multi-drug resistance-related genes that correlated to a lethal phenotype in C. elegans killing assays. Under these conditions, HHQ, a precursor of PQS, rather than PQS itself, became the main inducer for pqsABCDE operon expression. P. aeruginosa virulence expression in response to k-opioids required PqsE since ΔPqsE was attenuated in its ability to activate virulence- and efflux pumps-related genes. Extracellular inorganic phosphate completely changed the transcriptional response of PAO1 to the k- opioid preventing pqsABCDE expression, the activation of multiple virulence- and efflux pumps-related genes, and the ability of P. aeruginosa to kill C. elegans. These results indicate that when P. aeruginosa senses resource abundance in the form of phosphate, it overrides its response to compensatory host signals such as opioids to express a virulent and lethal phenotype. These studies confirm a central role for phosphate in P. aeruginosa virulence that might be exploited to design novel anti- virulence strategies. © 2012 Zaborin et al.

Loading Fellowship for Interpretation of Genomes collaborators
Loading Fellowship for Interpretation of Genomes collaborators