Feil Family Brain and Mind Research Institute

New York City, NY, United States

Feil Family Brain and Mind Research Institute

New York City, NY, United States
SEARCH FILTERS
Time filter
Source Type

News Article | April 28, 2017
Site: www.businesswire.com

NEW YORK--(BUSINESS WIRE)--Weill Cornell Medicine today announced a gift made by WorldQuant, LLC (“WorldQuant”) and Igor Tulchinsky that will further realize the promise of precision medicine. The $5 million gift establishes a new initiative that will use predictive tools to enhance Weill Cornell Medicine’s capability to diagnose and treat a variety of illnesses, with the goal of improving outcomes for patients. The WorldQuant Initiative for Quantitative Prediction brings together financial and medical experts whose collaboration strives to enhance biomedical research. Weill Cornell Medicine’s scientists, working closely with researchers and technologists from WorldQuant, will deploy predictive tools and quantitative methods to deepen the understanding of genetic factors that drive disease in individual patients. Using sophisticated algorithms, the new initiative will enable the research team to analyze genomic data to identify patterns and trends that may predict patients’ future risk of developing disease, as well as potential outcomes. These insights may be used to improve the diagnosis and treatment of a variety of illnesses, including cancer, neurological disorders, cardiovascular diseases and infections. Weill Cornell Medicine researchers Dr. Christopher Mason, the WorldQuant Research Scholar, and Dr. Olivier Elemento, the Walter B. Wriston Research Scholar, will lead the initiative, which will involve joint work with physician-scientists at the Caryl and Israel Englander Institute for Precision Medicine and the Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine. “This outstanding gift will accelerate and expand Weill Cornell Medicine’s approach to precision medicine, providing new predictive tools that will lead to even better outcomes for patients,” said Jessica Bibliowicz, chairman of the Weill Cornell Medicine Board of Overseers. “We are very grateful to Igor Tulchinsky and WorldQuant, LLC for making this initiative possible.” “The use of quantitative prediction for patients represents an important new tool at Weill Cornell Medicine,” said Dr. Augustine M.K. Choi, the Stephen and Suzanne Weiss Dean at Weill Cornell Medicine. “We appreciate Mr. Tulchinsky’s generosity, which will help us achieve new goals in the rapidly evolving field of precision medicine.” For WorldQuant, an international quantitative investment management firm founded by Mr. Tulchinsky, who is chairman and CEO, applying predictive algorithms to medical research is a natural progression. “There is a great opportunity to leverage the technology and proprietary algorithms we’ve developed for use outside of the financial markets, particularly around predictive medicine and cancer research, where the stakes are so high,” said Mr. Tulchinsky, a member of the Board of Overseers at Weill Cornell Medicine. “This initiative has tremendous possibilities, and I am proud to help drive advances in the field.” Drs. Mason and Elemento, as co-directors of the initiative, will leverage new technologies to analyze clinical samples and visualize various diseased tissues at single-cell resolution. These methods will be combined with a supercomputing infrastructure, which includes developing new software to crunch data using advanced pattern-recognition algorithms to model disease progression. One of the initiative’s ultimate goals is to give researchers the ability to examine a blood draw or urine sample from one patient and predict his or her future risk for developing a specific type of cancer. The same technology could also give researchers the ability to rapidly diagnose patients and predict which treatments might work, which treatments may encounter resistance and how the disease is likely to progress. In the future, this framework may enable investigators to analyze single cells and molecules from blood, tumor biopsies, saliva or other clinical samples collected from patients seeking care at Weill Cornell Medicine and NewYork-Presbyterian/Weill Cornell Medical Center, and then use analytical algorithms to create personalized predictive models based on findings from longitudinal healthcare data collected from thousands of patients. To accomplish this, Drs. Mason and Elemento will work closely with WorldQuant’s research team and intend to recruit software engineers and experts in artificial intelligence who can develop innovative quantitative prediction tools and analyze findings. They will continue to provide advanced training in quantitative biology and modeling to Weill Cornell Medicine’s physician-scientists to support this effort. “We are looking forward to using the tools and methods that will result from this philanthropic investment to tease apart disease cells’ secrets and create predictive models of health for patients,” said Dr. Mason, who is also an associate professor of physiology and biophysics, an associate professor of computational genomics at the HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, and an associate professor of neuroscience in the Feil Family Brain and Mind Research Institute at Weill Cornell Medicine. “Not only does this gift enable new science and predictive models in medicine, it also creates an unprecedented collaboration between two big-data groups at Weill Cornell Medicine and WorldQuant.” “This incredibly generous gift will likely spur a whole new generation of biomedical discoveries by helping bring predictive disease analytics to precision medicine,” said Dr. Elemento, who is also associate director of the Institute for Computational Biomedicine and an associate professor of physiology and biophysics at Weill Cornell Medicine. “We’re profoundly thankful to Igor for his support, and grateful to have WorldQuant as a partner in pioneering new approaches to understanding cancer, infections and neurological diseases.” Weill Cornell Medicine is committed to excellence in patient care, scientific discovery and the education of future physicians in New York City and around the world. The doctors and scientists of Weill Cornell Medicine — faculty from Weill Cornell Medical College, Weill Cornell Graduate School of Medical Sciences, and Weill Cornell Physician Organization — are engaged in world-class clinical care and cutting-edge research that connect patients to the latest treatment innovations and prevention strategies. Located in the heart of the Upper East Side's scientific corridor, Weill Cornell Medicine's powerful network of collaborators extends to its parent university Cornell University; to Qatar, where an international campus offers a U.S. medical degree; and to programs in Tanzania, Haiti, Brazil, Austria and Turkey. Weill Cornell Medicine faculty provide comprehensive patient care at NewYork-Presbyterian Weill Cornell Medical Center, NewYork-Presbyterian Lower Manhattan Hospital and NewYork-Presbyterian Queens. Weill Cornell Medicine is also affiliated with Houston Methodist. For more information, visit weill.cornell.edu. WorldQuant, LLC is a global quantitative investment firm that was founded in 2007 by Igor Tulchinsky and now has more than $5 billion in assets under management. The firm has more than 20 offices in 15 countries and over 600 employees and 500 consultants. WorldQuant develops and deploys systematic investment strategies across a variety of asset classes in global markets, utilizing a proprietary research platform and investment process. For more information on WorldQuant’s culture and philosophy, please visit www.WeAreWorldQuant.com.


Kamel H.,Feil Family Brain and Mind Research Institute | Healey J.S.,McMaster University
Circulation Research | Year: 2017

Cardiac embolism accounts for an increasing proportion of ischemic strokes and might multiply several-fold during the next decades. However, research points to several potential strategies to stem this expected rise in cardioembolic stroke. First, although one-third of strokes are of unclear cause, it is increasingly accepted that many of these cryptogenic strokes arise from a distant embolism rather than in situ cerebrovascular disease, leading to the recent formulation of embolic stroke of undetermined source as a distinct target for investigation. Second, recent clinical trials have indicated that embolic stroke of undetermined source may often stem from subclinical atrial fibrillation, which can be diagnosed with prolonged heart rhythm monitoring. Third, emerging evidence indicates that a thrombogenic atrial substrate can lead to atrial thromboembolism even in the absence of atrial fibrillation. Such an atrial cardiomyopathy may explain many cases of embolic stroke of undetermined source, and oral anticoagulant drugs may prove to reduce stroke risk from atrial cardiomyopathy given its parallels to atrial fibrillation. Non-vitamin K antagonist oral anticoagulant drugs have recently expanded therapeutic options for preventing cardioembolic stroke and are currently being tested for stroke prevention in patients with embolic stroke of undetermined source, including specifically those with atrial cardiomyopathy. Fourth, increasing appreciation of thrombogenic atrial substrate and the common coexistence of cardiac and extracardiac stroke risk factors suggest benefits from global vascular risk factor management in addition to anticoagulation. Finally, improved imaging of ventricular thrombus plus the availability of non-vitamin K antagonist oral anticoagulant drugs may lead to better prevention of stroke from acute myocardial infarction and heart failure. © 2017 American Heart Association, Inc.


Hochrainer K.,Feil Family Brain and Mind Research Institute
Translational Stroke Research | Year: 2017

Post-translational protein modifications present an elegant and energy efficient way to dynamically reprogram cellular protein properties and functions in response to homeostatic imbalance. One such protein modification is the tagging of proteins with the small modifier ubiquitin that can have an impact on protein stability, localization, interaction dynamics, and function. Ubiquitination is vital to any eukaryotic cell under physiological conditions, but even more important under stress including oxidative, genotoxic, and heat stress, where ubiquitination levels are drastically increased. Elevated levels of ubiquitin-protein conjugates are also observed in the brain after focal and global cerebral ischemia. Post-ischemic ubiquitination is immediately induced with reperfusion and transiently detected in neurons with survival potential located in the peri-infarct area. This review aims to critically discuss current knowledge and controversies on protein ubiquitination after cerebral ischemia, with special emphasis on potential mechanisms leading to elevated ubiquitination and on target identification. Further, possible functional implications of post-ischemic ubiquitination, including a relationship to SUMOylation, a neuroprotective modification, will be highlighted. The elevation in ubiquitinated proteins following cerebral ischemia is a greatly under-explored research area, the better understanding of which may contribute to the development of novel stroke therapies. © 2017 Springer Science+Business Media, LLC


Almey A.,Concordia University at Montréal | Milner T.A.,Feil Family Brain and Mind Research Institute | Milner T.A.,Rockefeller University | Brake W.G.,Concordia University at Montréal
Neuroscience Letters | Year: 2016

Estrogens affect dopamine transmission in the striatum, increasing dopamine availability, maintaining D2 receptor density, and reducing the availability of the dopamine transporter. Some of these effects of estrogens are rapid, suggesting that they are mediated by membrane associated receptors. Recently our group demonstrated that there is extra-nuclear labeling for ERα, ERβ, and GPER1 in the striatum, but that ERα and GPER1 are not localized to dopaminergic neurons in this region. GABAergic neurons are the most common type of neuron in the striatum, and changes in GABA transmission affect dopamine transmission. Thus, to determine whether ERα or GPER1 are localized to GABAergic neurons, we double labeled the striatum with antibodies for ERα or GPER1 and GABA and examined them using electron microscopy. Ultrastructural analysis revealed that ERα and GPER1 are localized exclusively to extranuclear sites in the striatum, and ∼35% of the dendrites and axon terminals labeled for these receptors contain GABA immunoreactivity. Binding at membrane-associated ERα and GPER1 could account for rapid estrogen-induced decreases in GABA transmission in the striatum, which, in turn, could affect dopamine transmission in this region. © 2016 Elsevier Ireland Ltd


Hill C.E.,Burke Medical Research Institute | Hill C.E.,Feil Family Brain and Mind Research Institute
Neuroscience Letters | Year: 2017

Following spinal cord injury (SCI), most axons fail to regenerate and instead form large, swollen endings generically called ‘retraction bulbs.’ These endings form and persist after SCI even under experimental therapeutic conditions where significant CNS regeneration occurs. Although retraction bulbs can arise from either activation of degenerative processes or deficits in regenerative processes, they are typically grouped as a single type of axonal ending. To facilitate the targeting of axonal endings for SCI repair, this review focuses on dissecting the different types of axonal endings present following injury by examining them in the context of the temporal, degenerative and regenerative changes that occur following injury. The stages of axonal dieback (also known as axonal retraction) and the steps necessary for successful axonal regeneration are outlined. The types of axonal endings that can arise as an axon successfully or unsuccessfully mounts a regenerative response are examined, with an emphasis on retraction bulbs, growth cones, and collapsed growth cones. Retraction bulbs are subdivided into those that arise from a failure to form a growth cone (endbulbs) and those that stall in response to inhibitory gradients (dystrophic axonal endings). The current understanding of the mechanisms that lead to the development of different types of axonal endings, how different experimental therapeutic interventions may act on different types of axonal endings, the current gaps in understanding the sites of action of some pro-regenerative therapies, and some of the methodological challenges to studying different types of axonal endings are discussed. © 2016


McEwen B.S.,Rockefeller University | Milner T.A.,Rockefeller University | Milner T.A.,Feil Family Brain and Mind Research Institute
Journal of Neuroscience Research | Year: 2017

Sex hormones act throughout the entire brain of both males and females via both genomic and nongenomic receptors. Sex hormones can act through many cellular and molecular processes that alter structure and function of neural systems and influence behavior as well as providing neuroprotection. Within neurons, sex hormone receptors are found in nuclei and are also located near membranes, where they are associated with presynaptic terminals, mitochondria, spine apparatus, and postsynaptic densities. Sex hormone receptors also are found in glial cells. Hormonal regulation of a variety of signaling pathways as well as direct and indirect effects on gene expression induce spine synapses, up- or downregulate and alter the distribution of neurotransmitter receptors, and regulate neuropeptide expression and cholinergic and GABAergic activity as well as calcium sequestration and oxidative stress. Many neural and behavioral functions are affected, including mood, cognitive function, blood pressure regulation, motor coordination, pain, and opioid sensitivity. Subtle sex differences exist for many of these functions that are developmentally programmed by hormones and by not yet precisely defined genetic factors, including the mitochondrial genome. These sex differences and responses to sex hormones in brain regions, which influence functions not previously regarded as subject to such differences, indicate that we are entering a new era of our ability to understand and appreciate the diversity of gender-related behaviors and brain functions. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.


News Article | December 8, 2016
Site: www.eurekalert.org

A severely brain injured woman, who recovered the ability to communicate using her left eye, restored connections and function of the areas of her brain responsible for producing expressive language and responding to human speech, according to new research from Weill Cornell Medicine scientists. The study, published Dec. 7 in Science Translational Medicine, began 21 months after Margaret Worthen suffered massive strokes, and her continuing recovery was tracked for nearly three years. The research signifies the first time that scientists have captured the restoration of communication of a minimally conscious patient by measuring aspects of brain structure and function before and after communication resumed. It also raises the question of whether other patients in chronic care facilities who appear to be minimally responsive or unresponsive may harbor organized, higher-level brain function. "From the beginning of Margaret's attempt to communicate, through the course of our study, we were able to show reorganization of the areas of her brain responsible for expressive language, as well as an exceptionally large change in the correlation across the brain areas in response to human speech," said study lead author Daniel Thengone, the Fred Plum Fellow in Systems Neurology and Neuroscience in the Feil Family Brain and Mind Research Institute at Weill Cornell Medicine. Adds senior study author Dr. Nicholas D. Schiff, the Jerold B. Katz Professor of Neurology and Neuroscience in the Feil Family Brain and Mind Research Institute: "This is a unique demonstration of plastic change in the brain of an adult starting years after a severe brain injury. We showed a convergence of measurements over years and at multiple time points, revealing an evolving biological process of recovery." For the first 21 months after Ms. Worthen's strokes, most doctors diagnosed her as being in a vegetative state, unable to speak and unaware of herself and her environment. Then, during her first visit with Dr. Schiff's team, doctors detected an ability to respond to their command to look down with her left eye. Her ability was initially intermittent, but over the course of a year she developed a one-way communication system. She was able to respond to yes and no questions, such as "Is your name Margaret?" or "Is your father's name Michael?" by moving her left eye down or up, but lacked a method to ask questions or use a brain-computer interface. To measure the changes in Ms. Worthen's brain as she improved this form of communication, the researchers used a number of imaging tools. The main technique, called diffusion tensor imaging, uses structural information about the brain obtained by magnetic resonance imaging (MRI) to make measurements that enable scientists to infer connection between specific areas. Dr. Schiff and his colleagues found evidence for two critical processes - most prominently, reconnection of Broca's area, the region of the brain located in the frontal lobe of the dominant hemisphere that is associated with language and speech. In addition, the two hemispheres of the patient's brain had increased their connectivity. The findings suggest that reconnection began within the left hemisphere and extended to the right, corresponding to the restoration of Ms. Worthen's ability to communicate. The researchers also used functional MRI to measure blood flow changes in response to brain activity while Ms. Worthen listened to a human voice speaking. They found that the functional recovery of Broca's area over time corresponded with the change in structural connectivity. In addition, language-responsive brain regions showed increasing correlation across both hemispheres over time. The restoration of Ms. Worthen's brain's expressive language system followed her caregivers' attempts to establish communication over the nearly three years of the study. Her recovered expressive language networks may also have triggered a restoration of Ms. Worthen's inner speech or inner dialogue, which could have reinforced those same networks, according to the study authors, which include Dr. Henning Voss, associate professor of physics in radiology at Weill Cornell Medicine, and Dr. Esteban Fridman, assistant professor of neuroscience at the Feil Family Brain and Mind Research Institute at Weill Cornell Medicine. The findings also raise important questions about how clinicians care for patients who are diagnosed as in vegetative or minimally conscious state, Dr. Schiff said. "We looked carefully at Margaret, made an observation that there was a way to try to connect with her, and the world changed for her," he said. "Her life changed because now she wasn't being treated as if she may or may not be conscious. She was being treated as if she was there, and she was present." Dr. Schiff's discovery that Ms. Worthen was able to communicate with her left eye "changed everything," according to her mother, Nancy Smith Worthen. For example, it opened the door to speech therapy, which enabled caregivers to assess whether or not she was experiencing pain, and for Mrs. Worthen to determine her daughter's wants or needs. Ms. Worthen was able to produce paintings with her mother's hand guiding her, which Mrs. Worthen credits with further stimulating her brain. Ms. Worthen, who died of complications from pneumonia last year, went on to develop enough facility with a computer interface that she was able to attend her five-year college reunion and hold conversations with classmates, assisted by a speech therapist. Her story is among those included in "Rights Come to Mind: Brain Injury, Ethics, and the Struggle for Consciousness," by Dr. Joseph Fins, the E. William Davis Jr., MD, Professor of Medical Ethics and chief of the Division of Medical Ethics at Weill Cornell Medicine. "When I would ask Margaret if she wanted to do this work with Dr. Schiff, she would always say yes," Mrs. Worthen said. "To have her brain be studied was the way she could do something in the world with her disability. And now, even after she's gone, she's still contributing. I'm just so proud of her." Although the findings are from a single-subject study, scientists say they could apply to other patients based on the proposed mechanism and previous research findings. Ten years ago, team members reported similar changes of increased connections between the two cerebral hemispheres in Terry Wallis, a minimally conscious patient who spontaneously recovered speech 19 years after a traumatic brain injury. In addition, other studies have implicated injuries to the central thalamus such as those Ms. Worthen experienced in a general mechanism underlying impaired function in patients with disorders of consciousness. This research was supported by the National Institutes of Health, the Charles A. Dana Foundation, the James S. McDonnell Foundation, the Jerold B. Katz Foundation and the Fred Plum Fellowship in Systems Neurology and Neurosciences.


Ishii M.,Feil Family Brain and Mind Research Institute | Wang G.,Feil Family Brain and Mind Research Institute | Racchumi G.,Feil Family Brain and Mind Research Institute | Dyke J.P.,New York Medical College | Iadecola C.,Feil Family Brain and Mind Research Institute
Journal of Neuroscience | Year: 2014

Weight loss is a prominent early feature of Alzheimer's disease (AD) that often precedes the cognitive decline and clinical diagnosis. While the exact pathogenesis ofADremains unclear, accumulation of amyloid-β (Aβ) derived from the amyloid precursor protein (APP) in the brain is thought to lead to the neuronal dysfunction and death underlying the dementia. In this study, we examined whether transgenic mice overexpressing the Swedish mutation of APP (Tg2576), recapitulating selected features of AD, have hypothalamic leptin signaling dysfunction leading to early body weight deficits. We found that 3-month-old Tg2576 mice, before amyloid plaque formation, exhibit decreased weight with markedly decreased adiposity, low plasma leptin levels, and increased energy expenditure without alterations in feeding behavior. The expression of the orexigenic neuropeptide Y (NPY) in the hypothalamus to the low leptin state was abnormal at basal and fasting conditions. In addition, arcuate NPY neurons exhibited abnormal electrophysiological responses to leptin in Tg2576 hypothalamic slices or wild-type slices treated withAβ. Finally, the metabolic deficits worsened as Tg2576 mice aged and amyloid burden increased in the brain. These results indicate that excessAβ can potentially disrupt hypothalamic arcuate NPY neurons leading to weight loss and a pathologically low leptin state early in the disease process that progressively worsens as the amyloid burden increases. Collectively, these findings suggest that weight loss is an intrinsic pathological feature of Aβ accumulation and identify hypothalamic leptin signaling as a previously unrecognized pathogenic site of action for Aβ. © 2014 the authors.


News Article | March 28, 2016
Site: www.rdmag.com

Certain types of bacteria in the gut can leverage the immune system to decrease the severity of stroke, according to new research from Weill Cornell Medicine. This finding can help mitigate stroke -- which is the second leading cause of death worldwide. In the study, published March 28 in Nature Medicine, mice received a combination of antibiotics. Two weeks later, the researcher team -- which included collaborators at Memorial Sloan Kettering Cancer Center -- induced the most common type of stroke, called ischemic stroke, in which an obstructed blood vessel prevents blood from reaching the brain. Mice treated with antibiotics experienced a stroke that was about 60 percent smaller than rodents that did not receive the medication. The microbial environment in the gut directed the immune cells there to protect the brain, the investigators said, shielding it from the stroke's full force. "Our experiment shows a new relationship between the brain and the intestine," said Dr. Josef Anrather, the Finbar and Marianne Kenny Research Scholar in Neurology and an associate professor of neuroscience in the Feil Family Brain and Mind Research Institute at Weill Cornell Medicine. "The intestinal microbiota shape stroke outcome, which will impact how the medical community views stroke and defines stroke risk." The findings suggest that modifying the microbiotic makeup of the gut can become an innovative method to prevent stroke. This could be especially useful to high-risk patients, like those undergoing cardiac surgery or those who have multiple obstructed blood vessels in the brain. Further investigation is needed to understand exactly which bacterial components elicited their protective message. However, the researchers do know that the bacteria did not interact with the brain chemically, but rather influenced neural survival by modifying the behavior of immune cells. Immune cells from the gut made their way to the outer coverings of the brain, called the meninges, where they organized and directed a response to the stroke. "One of the most surprising findings was that the immune system made strokes smaller by orchestrating the response from outside the brain, like a conductor who doesn't play an instrument himself but instructs the others, which ultimately creates music," said Dr. Costantino Iadecola, director of the Feil Family Brain and Mind Research Institute and the Anne Parrish Titzell Professor of Neurology at Weill Cornell Medicine. The newfound connection between the gut and the brain holds promising implications for preventing stroke in the future, which the investigators say might be achieved by changing dietary habits in patients or "at risk" individuals. "Dietary intervention is much easier to accomplish than drug use, and it could reach a broad base," Dr. Anrather said. "This is a little far off from the current study -- it's music of the future. But diet has the biggest effect of composition of microbiota, and once beneficial and deleterious species are identified, we can address them with dietary intervention."


NEW YORK, Dec. 12, 2016 /PRNewswire/ -- MeiraGTx, a New York and UK based gene therapy company, announces the expansion of its Neurodegenerative Disease gene therapy pipeline. Research into the causes of neurodegenerative disease has converged upon the central idea that misfolded proteins play a critical role in damaging neuronal function and the ultimate progression to neuronal cell death. The new program, a collaboration with Dr. Greg Petsko of Weill Cornell Medicine, targets neurodegenerative disease by altering neuronal protein processing. Leveraging seminal work from Dr. Petsko, the Arthur J. Mahon Professor of Neuroscience and Director of its Helen and Robert Appel Alzheimer's Disease Research Institute in the Feil Family Brain and Mind Research Institute at Weill Cornell Medicine, and his colleagues, the new program targets one of the master regulators of protein trafficking, known as retromer. Dr. Petsko and colleagues have developed genetic strategies to reprogram retromer, impacting protein trafficking, processing and aggregation. Using a gene therapy approach, the team aims to modulate retromer function to treat several inherited and age-related neurodegenerative diseases including Alzheimer's and Parkinson's disease. "We are excited to initiate this important collaboration," said Dr. Petsko. "I believe that using gene therapy approaches to correct trafficking defects in the brains of Alzheimer's patients by increasing retromer pathway function addresses what may be the seminal cellular problem in this - and probably other - neurodegenerative diseases. My colleagues and I think this is an innovative and important approach that holds great promise for the treatment of Alzheimer's disease. While we realize that there is still a long way to go before our ideas can be tested in patients, partnering with MeiraGTx, one of the world's leading companies in the exciting field of gene therapy, puts the translation of this science to the clinic in the best possible hands." "We are very excited to begin this collaboration with Dr. Petsko and his colleagues. We believe that retromer is one of the most important new targets in the field of Alzheimer's and neurodegenerative disease. Our approaches may lead to effective new therapies for patients with these diseases," said Alexandria Forbes, Ph.D., President and CEO of MeiraGTx. MeiraGTx is committed to the development of novel gene therapies to transform the lives of patients suffering from acquired and inherited disorders. The company is developing treatments for ocular diseases, including rare inherited blindness and age-related macular degeneration (AMD). MeiraGTx is also establishing treatments for xerostomia, a frequent and debilitating side effect of radiation treatment used in head and neck cancers, as well as certain neurodegenerative diseases. In addition, MeiraGTx is developing novel gene regulation platforms that promise to transform the way gene therapy can be applied and create new paradigms for biologic therapeutics. The doctors and scientists of Weill Cornell Medicine are engaged in world-class clinical care and cutting-edge research that connect patients to the latest treatment innovations and prevention strategies. The mission of the Office of Biopharma Alliances and Research Collaborations at Weill Cornell Medicine is to proactively generate, structure and negotiate translational research alliances with industry to advance promising research projects that have commercial potential. For more information, contact Larry Schlossman at las2041@med.cornell.edu or at 212-746-6909. This press release contains forward-looking statements. These forward-looking statements are based on management's expectations and are subject to certain factors, risks and uncertainties that may cause actual results, outcome of events, timing and performance to differ materially from those expressed or implied by such statements. The information contained in this press release is believed to be current as of the date of original issue. MeiraGTx expressly disclaims any obligation or undertaking to release publicly any updates or revisions to any forward-looking statements contained herein to reflect any change in our expectations with regard thereto or any change in events, conditions or circumstances on which any such statements are based

Loading Feil Family Brain and Mind Research Institute collaborators
Loading Feil Family Brain and Mind Research Institute collaborators