Time filter

Source Type

EINDHOVEN, Netherlands

Agency: Cordis | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-02-2014 | Award Amount: 139.30M | Year: 2015

The proposed pilot line project WAYTOGO FAST objective is to leverage Europe leadership in Fully Depleted Silicon on Insulator technology (FDSOI) so as to compete in leading edge technology at node 14nm and beyond preparing as well the following node transistor architecture. Europe is at the root of this breakthrough technology in More Moore law. The project aims at establishing a distributed pilot line between 2 companies: - Soitec for the fabrication of advanced engineered substrates (UTBB: Ultra Thin Body and BOx (buried oxide)) without and with strained silicon top film. - STMicroelectronics for the development and industrialization of state of the art FDSOI technology platform at 14nm and beyond with an industry competitive Power-Performance-Area-Cost (PPAC) trade-off. The project represents the first phase of a 2 phase program aiming at establishing a 10nm FDSOI technology for 2018-19. A strong added value network is created across this project to enhance a competitive European value chain on a European breakthrough and prepare next big wave of electronic devices. The consortium gathers a large group of partners: academics/institutes, equipment and substrate providers, semiconductor companies, a foundry, EDA providers, IP providers, fabless design houses, and a system manufacturer. E&M will contribute to the objective of installing a pilot line capable of manufacturing both advanced SOI substrates and FDSOI CMOS integrated circuits at 14nm and beyond. Design houses and electronics system manufacturer will provide demonstrator and enabling IP, to spread the FDSOI technology and establish it as a standard in term of leading edge energy efficient CMOS technology for a wide range of applications battery operated (consumer , healthcare, Internet of things) or not. Close collaboration between the design activities and the technology definition will tailor the PPAC trade-off of the next generation of technology to the applications needs.

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2013-ITN | Award Amount: 3.40M | Year: 2014

The purpose of the SIMDALEE2 (Sources, Interaction with Matter, Detection and Analysis of Low Energy Electrons) network is to establish a world-class research training platform for the science and technology of nanoscale manipulation and analysis using low energy electrons. Apart from an effective and well-structured training programme, the network will pursue the following scientific goals: (1) optimizing beam size by correlating contemporary field emission (FE) theory with high resolution holographic measurements of magnetic and electric fields of FE tips with different shapes, both with and without primary electron optics; (2) putting the understanding of the contrast mechanism of electron beam techniques on a sound footing by comparing physical models with novel benchmark spectra acquired using a coincidence technique; (3) improving detection as well as understanding of emitted energy-, angular-, and spin-dependent spectra. This issue will be addressed for the common case of detectors in the a field-free environment, and for the special case when the emitted electrons encounter an electric field prior to detection; (4) Electron beam modification of nanostructured surfaces; (5) Progress in the aforementioned fields will lead to the development of an innovative prototypical methodology for nanoscale characterization with electron beams in the form of a compact desktop-type Near-Field-Emission Scanning Electron Microscope (NFESEM). Finally, (6) the economic impact and feasibility of low energy electron beam methodology will be investigated within the project. Accordingly, the ESRs and ERs will develop and acquire experience on a comprehensive methodology beneficial for any industrial or academic laboratory employing or developing electron beam techniques for natural science studies, as well as for biology and engineering. Their participation in this interdisciplinary and intersectoral network will greatly further their career opprtunities in S&T in Europe.

Agency: Cordis | Branch: FP7 | Program: JTI-CP-ARTEMIS | Phase: SP1-JTI-ARTEMIS-2010-2 | Award Amount: 17.11M | Year: 2011

HIGH PROFILE combines industrial and clinical driven R&D activities dealing with image diagnostic platforms for the central nervous system. The projects approach is to progress state-of-the-art by integrating imaging equipment for diagnostics including algorithms, equipment and infrastructure for massive image processing and simulation to support combinations of images from different medical equipment modalities (MRI, MRS, fMRI, NIRS, EIT and EEG) and comparison/fusion of images with physiological models of central nervous systems. HIGH PROFILE aims to develop multi-scale, adaptive algorithms to merge information about the actual behavior of the brain, originating from (f)MRI, MRS, NIRS, EIT and EEG. These algorithms allow a physician to follow the status of the patient during his/her evolution, and be supported by a suitable content management platform and a data infrastructure capable of handling the massive quantities of data produced by these technologies, delivering them to their point of use. Better imaging of the central nervous system and the head/neck area will improve diagnosis treatment of neurological diseases like insomnia, depression, multiple sclerosis and epilepsy, as well as brain and head/neck cancer. The approach developed by HIGH PROFILE for these conditions should also be extendable to the whole field of advanced medical imaging. For deployment it is necessary to address the challenge of the increasing complexity of real time image processing. The necessary image processing components will be deployed on standard hardware to perform the necessary processing tasks. Image processing is a performance intensive task and system integrators will deploy it on emerging standard hardware platforms running (configurations of) multi-core processors. As this deployment is not only relevant for healthcare only, and a generic platform improves the possibilities to integrate external software, other domains are involved in the deployment of image processing chains. APPROVED BY ARTEMIS-JU 24/06/2014

Agency: Cordis | Branch: H2020 | Program: ECSEL-IA | Phase: ECSEL-02-2014 | Award Amount: 181.08M | Year: 2015

The SeNaTe project is the next in a chain of thematically connected ENIAC JU KET pilot line projects which are associated with 450mm/300mm development for the 12nm and 10nm technology nodes. The main objective is the demonstration of the 7nm IC technology integration in line with the industry needs and the ITRS roadmap on real devices in the Advanced Patterning Center at imec using innovative device architecture and comprising demonstration of a lithographic platform for EUV and immersion technology, advanced process and holistic metrology platforms, new materials and mask infrastructure. A lithography scanner will be developed based on EUV technology to achieve the 7nm module patterning specification. Metrology platforms need to be qualified for N7s 1D, 2D and 3D geometries with the appropriate precision and accuracy. For the 7nm technology modules a large number of new materials will need to be introduced. The introduction of these new materials brings challenges for all involved processes and the related equipment set. Next to new deposition processes also the interaction of the involved materials with subsequent etch, clean and planarization steps will be studied. Major European stakeholders in EUV mask development will collaboratively work together on a number of key remaining EUV mask issues. The first two years of the project will be dedicated to find the best options for patterning, device performance, and integration. In the last year a full N7 integration with electrical measurements will be performed to enable the validation of the 7nm process options for a High Volume Manufacturing. The SeNaTe project relates to the ECSEL work program topic Process technologies More Moore. It addresses and targets as set out in the MASP at the discovery of new Semiconductor Process, Equipment and Materials solutions for advanced CMOS processes that enable the nano-structuring of electronic devices with 7nm resolution in high-volume manufacturing and fast prototyping.

Agency: Cordis | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.87M | Year: 2016

STREAM is a 4-year multi-site training network that aims at career development of Early Stage Researchers (ESRs) on scientific design, construction manufacturing and of advanced radiation instrumentation. STREAM targets the development of innovative radiation-hard, smart CMOS sensor technologies for scientific and industrial applications. The platform technology developed within the project will be tested in the demanding conditions posed by the CERN LHC detectors environment as well as European industry leaders in field of CMOS imaging, electron microscopy and radiation sensors. This leveraging factor will allow to fine-tune the technology to meet the requirements of industrial application cases on demand such as electron microscopy and medical X-ray imaging, as well as pathway towards novel application fields such as satellite environments, industrial X-ray systems and near-infrared imaging. The project will train a new generation of creative, entrepreneurial and innovative early-stage researchers and widen their academic career and employment opportunities. The STREAM consortium is composed of 10 research organisations and 5 industrial partners; the network will provide training to 17 ESRs. STREAM structures the research and training in four scientific work-packages which span the whole value-chain from research to application: CMOS Technologies Assessment, Smart Sensor Design and Layout, Validation and Qualification, Technology Integration, and Valorization.

Discover hidden collaborations