Time filter

Source Type

Nederhemert-Noord, Netherlands

Although available since the early days of electron microscopy, recent technology developments of the environmental transmission electron microscope (ETEM) have enabled new research in the study of nanomaterials in gaseous environments. Significant improvements in scanning/transmission electron microscope (S/TEM) technologies, while containing a gaseous environment close to the object under investigation, enable now the atomic scale study of phenomena occurring during gas-solid interactions. A focus behind these developments is the research on nanomaterial-based technologies, for instance for efficient energy conversion, use and storage as well as for environmental protection. In situ high spatial resolution characterization provides unique information that is beneficial for understanding the relationship between the structure, properties and function of nanostructures directly on their characteristic length scales. The progress in recent research is reviewed to highlight the potential of the state-of-the-art differentially-pumped microscope platform, based on the latest microscope generation optimized for atomic scale in situ investigations. Using cases from current catalysis research, high resolution imaging reveals structural changes in nanocatalysts when being active and is instrumental in understanding deactivation processes; while spectroscopy gives additional access to reactivity. Also, imaging schemes are discussed that focus on enhancing the achievable imaging resolution, while having the effect of electron beam-solid interaction in the nanomaterial under control. © 2014 The Royal Society of Chemistry. Source

A method and system for improved planar deprocessing of semiconductor devices using a focused ion beam system. The method comprises defining a target area to be removed, the target area including at least a portion of a mixed copper and dielectric layer of a semiconductor device; directing a precursor gas toward the target area; and directing a focused ion beam toward the target area in the presence of the precursor gas, thereby removing at least a portion of a first mixed copper and dielectric layer and producing a uniformly smooth floor in the milled target area. The precursor gas causes the focused ion beam to mill the copper at substantially the same rate as the dielectric. In a preferred embodiment, the precursor gas comprises methyl nitroacetate. In alternative embodiments, the precursor gas is methyl acetate, ethyl acetate, ethyl nitroacetate, propyl acetate, propyl nitroacetate, nitro ethyl acetate, methyl methoxyacetate, or methoxy acetylchloride.

FEI Company | Date: 2015-03-31

An improved method and apparatus for extracting and handling samples for S/TEM analysis. Preferred embodiments of the present invention make use of a micromanipulator and a hollow microprobe probe using vacuum pressure to adhere the microprobe tip to the sample. By applying a small vacuum pressure to the lamella through the microprobe tip, the lamella can be held more securely and its placement controlled more accurately than by using electrostatic force alone. By using a probe having a beveled tip and which can also be rotated around its long axis, the extracted sample can be placed down flat on a sample holder. This allows sample placement and orientation to be precisely controlled, thus greatly increasing predictability of analysis and throughput.

FEI Company | Date: 2015-10-08

When preparing a Hole-Free Phase Plates (HFPP) a preferably featureless thin film should be placed with high accuracy in the diffraction plane of the TEM, or a plane conjugate to it. Two methods for accurately placing the thin film in said plane are described. One method uses a Ronchigram of the thin film while the TEM is in imaging mode, and the magnification of the Ronchigram is tuned so that the magnification in the middle of the Ronchigram is infinite. The second method uses electrons scattered by the thin film while the TEM is in diffraction mode. When the thin film does not coincide with the diffraction plane, electrons scattered by the thin film seem to originate from another location than the cross-over of the zero beam. This is observed as a halo. The absence of the halo is proof that the thin film coincides with the diffraction plane.

FEI Company | Date: 2015-12-17

A high brightness ion source with a gas chamber includes multiple channels, wherein the multiple channels each have a different gas. An electron beam is passed through one of the channels to provide ions of a certain species for processing a sample. The ion species can be rapidly changed by directing the electrons into another channel with a different gas species and processing a sample with ions of a second species. Deflection plates are used to align the electron beam into the gas chamber, thereby allowing the gas species in the focused ion beam to be switched quickly.

Discover hidden collaborations