Oberschleissheim, Germany

Federal office for Radiation Protection

www.bfs.de/EN/home/home_node.html
Oberschleissheim, Germany

The Bundesamt für Strahlenschutz is the German Federal Office for Radiation Protection. The BfS was established in November 1989; the headquarters is located in Salzgitter, with branch offices in Berlin, Bonn, Freiburg, Gorleben, Oberschleißheim and Rendsburg. It has 708 employees and an annual budget of around 305 million Euro . Since 2009 the BfS is also responsible for the storage site of radioactive waste, Schacht Asse II. Wikipedia.

SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: COFUND-EJP | Phase: NFRP-07-2015 | Award Amount: 29.25M | Year: 2015

The proposed European Concerted Programme on Radiation Protection Research (acronym: CONCERT) aims to contribute to the sustainable integration of European and national research programmes in radiation protection. It will do so by focusing resources and efforts in five key directions: Bring together the elements of the European scientific communities in the fields of radiation effects and risks, radioecology, nuclear emergency preparedness, dosimetry and medical radiation protection, whose joint expertise is essential to continue the development of radiation protection knowledge in a multidisciplinary mode to reduce further the uncertainties in radiation protection. Strengthen integrative activities between the various areas of expertise, in particular biology, biophysics, epidemiology, dosimetry and modelling as well as fostering the use of existing infrastructures and education and training activities in radiation protection. Stimulate and foster scientific excellence, by setting up and co-funding advanced research programmes with the potential to enhance current knowledge and the scientific evidence base for radiation protection. Exchange and communicate with all stakeholders, including the professional organizations concerned with radiation protection, the regulatory organizations across Europe, the public and media where necessary, and the international community of scientific, technical, legal and other professional experts in radiation protection. Foster the harmonious application of available scientific basis for radiation protection practices across Europe, by bringing together scientific and technical expertise in radiation protection issues, standard setting know how, particularly with respect to the implementation of the Euratom Basic Safety Standards (BSS) at the legal, administrative and operational level. To reach its goals, CONCERT will have seven Work Packages each of which will focus on each of the key directions.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-CA | Phase: Fission-2011-3.5.1 | Award Amount: 1.55M | Year: 2012

Creating a sustainable network in biological dosimetry that involves a large number of experienced laboratories throughout the EU will significantly improve the accident and emergency response capabilities in case of a large-scale radiological emergency. A well organised cooperated action involving EU laboratories will offer the only chance for a fast and trustworthy dose assessment urgently needed in an emergency situation. The goal of RENEB is to establish a sustainable European network in biological dosimetry involving 23 organisations from 16 countries identified by the TENEB survey, that will guarantee highest efficiency in processing and scoring of biological samples for fast, reliable results implemented in the EU emergency management. This goal will be achieved through 5 tasks: 1) To create an operational basis of the network, based on coordination of the existing reliable and proven methods in biological dosimetry. 2) To expand and improve the network implementing appropriate new, molecular biology methods and integrating new partners. 3) To assure high quality standards by education and training activities of members and interested non-members. Here, special focus will be placed on quality assurance and management regarding the performed assays and involved laboratories. 4) To develop an operational structure of the network including contacts to national first responders, a well organised transnational infrastructure to facilitate cross-border transport of human biological samples, a long term funding strategy and to prepare an agenda to transform RENEB into a legal organisation. 5) To guarantee dissemination of knowledge by providing access to internal and external communication platforms and databases and close cooperation with national and global emergency preparedness systems and organisations. All of these activities are strictly complementary to on-going projects in the EU Security Research Programme, specifically to MULTIBIODOSE and to EURADOS.


Grant
Agency: European Commission | Branch: FP7 | Program: CP | Phase: Fission-2012-3.3.1 | Award Amount: 6.50M | Year: 2013

This proposal aims to close gaps that have been identified in nuclear and radiological preparedness following the first evaluation of the Fukushima disaster. It addresses the call Fission-2010-3.3.1: Update of emergency management and rehabilitation strategies and expertise in Europe. The consortium intends to review existing operational procedures in dealing with long lasting releases, address the cross border problematic in monitoring and safety of goods and will further develop still missing functionalities in decision support system ranging from improved source term estimation and dispersion modelling to the inclusion of hydrological pathways for European water bodies. As the management of the Fukushima event in Europe was far from being optimal, we propose to develop means on a scientific and operational basis to improve information collection, information exchange and the evaluation for such types of accidents. This will be achieved through a collaboration of industry, research and governmental organisations in Europe taking into account the networking activities carried out under the NERIS-TP project. Furthermore, the NERIS Platform member organisations (so far 43 partners) will be actively involved in the development.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-SA | Phase: Fission-2012-6.0.1 | Award Amount: 1.45M | Year: 2013

The health effects of exposures to fallout from Soviet nuclear weapons testing among the residents living nearby the Semipalatinsk nuclear test site in Kazakhstan are not well investigated. There are reports with contradicting results coming from the studies conducted on two independent cohorts: historical and new. Both use different control groups and dosimetric methods. The two cohorts have a high probability of including the same individuals. There is a need to investigate possibilities to merge them in order to avoid duplication of efforts and resources for future studies of the health effects in these populations. The main objectives of our feasibility study include: developing and testing mechanisms for identification of cohort members in the two cohorts; identification and testing of data linkage mechanisms; determination of the outcomes that can be studied (cancer and non-cancer diseases); setting up and testing procedures for follow-up; identification of case ascertainment mechanisms and sources, depending on the outcome; characterization and validation of dose assessment methods used in the two cohorts; investigation of the feasibility to collect data on confounding factors; assessing the availability of biological samples and their potential use in the future. The project will bring together scientists from Europe, Kazakhstan and Japan with the aim of developing a proposal for a future prospective full scale epidemiological study to address the dose-effect relationship for both cancer and non-cancer effects from low to moderate chronic doses, if the feasibility is demonstrated. To achieve the overall objective it is proposed to set-up a consortium that have considerable experience in epidemiological studies on populations residing around the Semipalatinsk nuclear test site and/or who have been extensively involved in the low dose risk research. The group will include European and international scientists with expertise in epidemiology, dosimetry, radiation biology and clinical medicine. At the end of the project, a detailed report based on the results of the work conducted will be developed, critically reviewed by the External Advisory Board and recommendations for future research needs will be made, if feasible. Other populations exposed to low to moderate dose radiation like in Fukushima or elsewhere can benefit from the outcomes of studying the unique Semipalatinsk cohort and the results will contribute to a better understanding and quantification of radiation risks for low to moderate chronic doses. The proposed project is in line with the Strategic Research Agenda of MELODI.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-CA | Phase: Fission-2013-3.3.1 | Award Amount: 1.28M | Year: 2014

The IARC previously led an EU funded project Agenda for Research on Chernobyl Health (ARCH), the objective of which was to recommend a strategic health research agenda following the Chernobyl accident. The ARCH demonstrated that Chernobyl provides a unique opportunity to answer questions about radiation risks. The multidisciplinary group of experts strongly supported the need for well-designed and coordinated long-term studies. The new initiative emphasises the need to build partnerships with the three countries mainly affected, plus Japan, the USA and European countries in order to take the research agenda forward. The purpose is therefore to bring together both key scientific players and funding partners to decide on the research priorities and to seek sustainable funding for those priority areas. Work under this proposal will be divided into five closely integrated work packages (WPs): WP 1: Coordination and overall management WP 2: International collaboration and agreement on research programme 2.1: Setting up an International network of research institutes committed to long-term research on Chernobyl 2.2: Development of Chernobyl Research Programme and timetable WP 3: Assessment of Chernobyl research infrastructures 3.1: Evaluation of the cohorts of exposed populations suitable to form Chernobyl Life-span cohorts 3.2: Inventory of dosimetric approaches and existing databases 3.3: Inventory of stored biological samples WP 4: International collaboration on proposing funding mechanism WP 5: Agreement on coordinating structure and setting-up research framework The CO-CHER project has a potential to develop a sustainable plan for research into the health effects of the Chernobyl accident with optimal use of available resources. It is completely in line with the MELODI initiative for integrated, long term effort in low dose risk research. The coordination action will also open new collaborations outside existing European networks.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-CSA | Phase: Fission-2013-3.4.1 | Award Amount: 5.53M | Year: 2013

COMET will strengthen the pan-European research initiative on the impact of radiation on man and the environment by facilitating the integration of radioecological research. COMET will build upon the foundations laid by the European Radioecology Alliance (ALLIANCE) and the on-going FP7 STAR Network of Excellence in radioecology. By collaborating with the European platforms on nuclear and radiological emergency response (NERIS) and low dose risk research (MELODI), COMET will significantly aid preparation for the implementation of the Horizon 2020 umbrella structure for Radiation Protection. In close association with STAR and the ALLIANCE, COMET will take forward the development of a Strategic Research Agenda as the basis for developing innovative mechanisms for joint programming and implementation (JPI) of radioecological research. To facilitate and foster future integration under a common federating structure, research activities developed within COMET will be targeted at radioecological research needs that will help achieve priorities of the NERIS and MELODI platforms. These research activities will be initiated in collaboration with researchers from countries where major nuclear accidents have occurred. Flexible funds, unallocated to specific tasks at project initiation, have been included within the COMET budget to facilitate RTD activities identified through the JPI mechanisms developed that are of joint interest to the ALLIANCE, NERIS and MELODI. It will also strengthen the bridge with the non-radiation community. Furthermore, COMET will develop strong mechanisms for knowledge exchange, dissemination and training to enhance and maintain European capacity, competence and skills in radioecology. The COMET consortium has 13 partners, expanding from the organisations within the FP7 STAR project. In particular, COMET partners from countries which have experienced major nuclear accidents (i.e. Ukraine and Japan) and/or who hold Observatory sites.


Grant
Agency: European Commission | Branch: FP7 | Program: CSA-CA | Phase: Fission-2013-5.1.1 | Award Amount: 1.50M | Year: 2014

For a vast amount of applications in the medical, industrial, research and other sectors, a good understanding of radiation protection (RP) is fundamental in order to protect workers, the public and the environment from the potential risks of ionising radiation. Within this perspective, building and maintaining an advanced level of competence in RP, assuring sufficient well-trained personnel and organising an adequate knowledge management, is crucial. Effective education and training (E&T) is a critical element in these matters, helping to prevent the decline in expertise and to meet future demands. ENETRAP III adds new and innovative topics to existing E&T approaches in RP. It will further develop the European reference training scheme with additional specialized modules for Radiation Protection Experts working in medical, waste management and NPP. It will implement the ECVET principles and will establish targeted assistance from regulators that will play a crucial role in the endorsement of the proposed courses and learning objectives. ENETRAP III will also introduce a train-the-trainer strategy. All organised pilot sessions will be open to young and more experienced students and professionals. In this way, ENETRAP III aims to contribute to increasing the attractiveness of nuclear careers and to lifelong learning activities. A web-based platform containing all relevant information about E&T in RP will facilitate an efficient knowledge transfer and capacity building in Europe and beyond. ENETRAP III will also propose guidance for implementing E&T for Radiation Protection Experts and Officers, hereby providing extremely important assistance to all Member States who are expected to transpose the Euratom BSS requirements into their national legislations. Moreover, ENETRAP III will demonstrate the practical feasibility of earlier developed concepts for mutual recognition and thus provide leading examples in Europe demonstrating effective borderless mobility.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-CSA | Phase: Fission-2013-3.1.1 | Award Amount: 10.26M | Year: 2013

Within the OPERRA project, it is proposed that the MELODI Association, as a well-advanced network, takes the lead in establishing the necessary structures able to manage the long-term European research programmes in radiation protection, also taking advantage of the valuable experience gathered through the DoReMi network of excellence. Whilst in fields adjacent to low-dose risk research (radioecology, nuclear emergency management) scientific issues would continue to be hosted by the sister associations, Alliance and NERIS, these associations are encouraged to join MELODI to establish an umbrella structure as equal partners. OPERRA will exploit the synergies of EURATOM and other EC programmes considering the most relevant joint program areas and mechanisms for funding joint activities. The project will also strengthen the links with national funding programs as well as the European education and training structures. Also, it will take steps towards a greater involvement of those new Member States who could benefit from increased participation in the radiation research programmes. Finally, OPERRA will take steps to further integrate the joint use of infrastructures in European countries, and to develop and facilitate an easier access to research infrastructures. The final objective of this project is to build up an umbrella coordination structure that has the capacity in a legal and logistical sense to administer future calls for research in radiation protection as a whole (including low-dose risk, radioecology, nuclear emergency management, and also research activities related to the medical uses of ionizing radiation) on behalf of the European Commission. OPERRA will prepare the organisation for a first competitive call by the end of 2013 for projects in low-dose risk research and a second competitive call in 2014 for broader projects in radiation protection research, subject to the approval of EC services, with the support of Go-between administrator operator and an external advisory entity.


Grant
Agency: European Commission | Branch: H2020 | Program: CSA | Phase: NFRP-10-2014 | Award Amount: 3.18M | Year: 2016

The present situation of nuclear energy in Europe asks for a continuing effort in the field of Education and Training aimed to assure a qualified workforce in the next decades. In this scenario, the present proposal is aimed at enhancing and networking the Europe-wide efforts initiated in the past decades by different organisations belonging to academia, research centres and industry to maintain and develop Education and Training in the nuclear fields. This will allow consolidating, developing and better exploiting the achievements already reached in the past and to tackle the present challenges in preparing the European workforce in the nuclear fields. The main objectives of the proposal are: 1. SURVEY AND COORDINATION OF NETWORKING IN E&T AND VET IN THE NUCLEAR AREAS 2. DESIGN AND IMPLEMENTATION OF COORDINATED E&T AND VET EFFORTS (Master and Summer Courses for continuous professional development) 3. GENERATIONAL TRANSFER OF EXPERTISE (Sustainable production of educational material) 4. CROSS BORDER TRANSFER OF EXPERTISE (Implementation of ECVET based exchanges among industrial bodies) 5. REINFORCING ETI ACTIONS FOR SHARING AND ENHANCING NUCLEAR SAFETY CULTURE COMPETENCE 6. FACILITATING THE NUCLEAR TRANSITION IN FUSION: COORDINATING THE E&T ACTIONS The European Nuclear Education Network (ENEN), as coordinator of the proposed action, together with the other Participants, is committed to pursue the above objectives, being fully coherent with the ones suggested in the call (NFRP10) and proposed by the SET Plan Roadmap for Education and Training for the nuclear sector, tightening at the same time the links among the different nuclear areas and better coordinating their contributions in the E&T fields. Strict links with the SNE-TP; IGD-TP and MELODI platforms and other relevant associations and bodies (EHRO-N, NUGENIA, EUTERP, IAEA, HERCA, etc.) will be implemented to assure coherence of this effort with similar other efforts going on in Europe.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: Fission-2011-3.1.1 | Award Amount: 4.47M | Year: 2012

The ANDANTE project will investigate the relative risk of neutrons compared to photons for tumorigenesis, as a function of dose and energy. The approach will be multidisciplinary, including physics measurements and modelling, molecular biology, radiobiology, and epidemiology. The relative risk of neutrons will be studied using human and animal stem cells irradiated with either photons or neutrons in vitro and analysed for early indicators of malignant transformations. Irradiated stem cells will be transplanted into mice to investigate progression into tumours. The experimental irradiation setup will be fully characterised and modelled in order to compare predicted molecular damage with biological results, following controlled irradiation with either photons or neutrons. A corresponding predictive model of the relative risk of cancer induction from photons or neutrons following paediatric radiotherapy will be developed and tested on clinical data, as a proof of principle, leading to a proposal for a prospective epidemiological study to validate the relative risk of neutrons on humans.

Loading Federal office for Radiation Protection collaborators
Loading Federal office for Radiation Protection collaborators