FDA NCTR

Jefferson City, AR, United States
Jefferson City, AR, United States
SEARCH FILTERS
Time filter
Source Type

Su Z.,FDA NCTR | Labaj P.P.,University of Vienna | Li S.,New York Medical College | Thierry-Mieg J.,U.S. National Institutes of Health | And 172 more authors.
Nature Biotechnology | Year: 2015

We present primary results from the Sequencing Quality Control (SEQC) project, coordinated by the US Food and Drug Administration. Examining Illumina HiSeq, Life Technologies SOLiD and Roche 454 platforms at multiple laboratory sites using reference RNA samples with built-in controls, we assess RNA sequencing (RNA-seq) performance for junction discovery and differential expression profiling and compare it to microarray and quantitative PCR (qPCR) data using complementary metrics. At all sequencing depths, we discover unannotated exon-exon junctions, with >80% validated by qPCR. We find that measurements of relative expression are accurate and reproducible across sites and platforms if specific filters are used. In contrast, RNA-seq and microarrays do not provide accurate absolute measurements, and gene-specific biases are observed for all examined platforms, including qPCR. Measurement performance depends on the platform and data analysis pipeline, and variation is large for transcript-level profiling. The complete SEQC data sets, comprising >100 billion reads (10Tb), provide unique resources for evaluating RNA-seq analyses for clinical and regulatory settings. © 2014 Nature America, Inc. All rights reserved.

Loading FDA NCTR collaborators
Loading FDA NCTR collaborators