Father Sean OSullivan Research Institute

Hamilton, Canada

Father Sean OSullivan Research Institute

Hamilton, Canada
SEARCH FILTERS
Time filter
Source Type

Rybak A.P.,McMaster University | Rybak A.P.,Father Sean OSullivan Research Institute | Rybak A.P.,St Josephs Hospital | Tang D.,McMaster University | And 2 more authors.
Cellular Signalling | Year: 2013

SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013 Elsevier Inc.


Lin X.,McMaster University | Lin X.,Father Sean OSullivan Research Institute | Lin X.,St Josephs Hospital | Yan J.,McMaster University | And 5 more authors.
Histology and Histopathology | Year: 2013

DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATMand Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signalregulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs.


Rybak A.P.,McMaster University | Rybak A.P.,Father Sean OSullivan Research Institute | Rybak A.P.,St Josephs Hospital | He L.,McMaster University | And 9 more authors.
Biochimica et Biophysica Acta - Molecular Cell Research | Year: 2011

While accumulating evidence demonstrates the existence of prostate cancer stem cells (PCSCs), PCSCs have not been isolated and thoroughly characterized. We report here the enrichment and characterization of sphere-propagating cells with stem-like properties from DU145 PC cells in a defined serum-free medium (SFM). Approximately 1.25% of monolayer DU145 cells formed spheres in SFM and 26% of sphere cells formed secondary spheres. Spheres are enriched for cells expressing prostate basal and luminal cytokeratins (34βE12 and CK18) and for cancer stem cell markers, including CD44, CD24, and integrin α2β1. Upon culturing spheres under differentiating media conditions in the presence of 10% serum, cells positive for CD44 and CD24 were substantially reduced. Furthermore, spheres could be generated from the sphere-derived adherent cell cultures and xenograft tumors, demonstrating the stemness of DU145 spheres. We have maintained spheres for more than 30 passages within 1.5. years without noticeable loss of their "stemness". Sphere cells possess self-renewal capacity, display significant increases in proliferation potential, and initiate xenograft tumors with enhanced capacity compared to monolayer DU145 cells. While EGF promoted the generation and maintenance of these stem-like cells, bFGF inhibited these events. Sphere cells proliferate slowly with a significant reduction in the activation of the PI3K-AKT pathway compared to monolayer DU145 cells. While knockdown of PTEN enhanced AKT activation, this did not affect the generation of primary spheres and the propagation of secondary spheres. Consistent with this observation, we were able to demonstrate the generation and propagation of spheres without the addition of external growth factors. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. © 2011 Elsevier B.V.


Wei F.,McMaster University | Wei F.,Father Sean OSullivan Research Institute | Wei F.,St Josephs Hospital | Wei F.,Institute of Women and Childrens Health | And 23 more authors.
Oncogene | Year: 2015

The BMI1 protein contributes to stem cell pluripotency and oncogenesis via multiple functions, including its newly identified role in DNA damage response (DDR). Although evidence clearly demonstrates that BMI1 facilitates the repair of double-stranded breaks via homologous recombination (HR), it remains unclear how BMI1 regulates checkpoint activation during DDR. We report here that BMI1 has a role in G2/M checkpoint activation in response to etoposide (ETOP) treatment. Ectopic expression of BMI1 in MCF7 breast cancer and DU145 prostate cancer cells significantly reduced ETOP-induced G2/M arrest. Conversely, knockdown of BMI1 in both lines enhanced the arrest. Consistent with ETOP-induced activation of the G2/M checkpoints via the ATM pathway, overexpression and knockdown of BMI1, respectively, reduced and enhanced ETOP-induced phosphorylation of ATM at serine 1981 (ATM pS1981). Furthermore, the phosphorylation of ATM targets, including γH2AX, threonine 68 (T68) on CHK2 (CHK2 pT68) and serine 15 (S15) on p53 were decreased in overexpression and increased in knockdown BMI1 cells in response to ETOP. In line with the requirement of NBS1 in ATM activation, we were able to show that BMI1 associates with NBS1 and that this interaction altered the binding of NBS1 with ATM. BMI1 consists of a ring finger (RF), helix-turn-helix-turn-helix-turn (HT), proline/serine (PS) domain and two nuclear localization signals (NLS). Although deletion of either RF or HT did not affect the association of BMI1 with NBS1, the individual deletions of PS and one NLS (KRMK) robustly reduced the interaction. Stable expression of these BMI1 mutants decreased ETOP-induced ATM pS1981 and CHK2 pT68, but not ETOP-elicited γH2AX in MCF7 cells. Furthermore, ectopic expression of BMI1 in non-transformed breast epithelial MCF10A cells also compromised ETOP-initiated ATM pS1981 and γH2AX. Taken together, we provide compelling evidence that BMI1 decreases ETOP-induced G2/M checkpoint activation via reducing NBS1-mediated ATM activation. © 2015 Macmillan Publishers Limited.


Wei F.,McMaster University | Wei F.,Father Sean OSullivan Research Institute | Wei F.,St Josephs Hospital | Wei F.,Guangdong Pharmaceutical University | And 11 more authors.
Cellular Signalling | Year: 2011

Modulation of MEK has been demonstrated to affect hydroxyurea (HU) induced-DNA damage response (DDR), implying the involvement of ERK1 and ERK2 in the process. To directly examine how the ERK kinases function in HU-initiated DDR, we knocked-down either ERK1 or ERK2 in MCF7 cells. This resulted in reduction of HU-induced phosphorylation of CHK1 S345 (serine 345), p53 S15, and H2AX S139. While HU potently induced CDC2 Y15 (tyrosine 15) phosphorylation, an event causing CDC2 inactivation, inhibition of ERK kinases using U0126 (a MEK inhibitor), MEK1K97M (a dominant negative MEK1), and knockdown of either ERK1 or ERK2 significantly attenuated HU-induced CDC2 Y15 phosphorylation. As CDC2 kinase activity is required for mitosis, our observations reveal that ERK1 and ERK2 kinases play important roles in preventing mitotic entry in response to HU. Consistent with ATR being the apical kinase to initiate HU-induced DDR, knockdown of ERK1 or ERK2 significantly inhibited HU-induced ATR recruitment to the stalled replication forks (ATR foci), an event required for ATR activation. Mechanistically, knockdown of ERK1 or ERK2 resulted in relocation of ATR from the nucleoplasm to the nucleolus in response to HU, therefore making ATR unavailable to the sites of DNA damage. Taken together, we demonstrate that ERK kinases sit upstream of ATR to facilitate its activation. © 2010 Elsevier Inc.


Rybak A.P.,McMaster University | Rybak A.P.,Father Sean OSullivan Research Institute | Rybak A.P.,St Josephs Hospital | Ingram A.J.,McMaster University | And 5 more authors.
PLoS ONE | Year: 2013

Prostate cancer stem-like cells (PCSCs) are being intensely investigated largely owing to their contributions towards prostate tumorigenesis, however, our understanding of PCSC biology, including their critical pathways, remains incompletely understood. While epidermal growth factor (EGF) is widely used in maintaining PCSC cells in vitro, the importance of EGF-dependent signaling and its downstream pathways in PCSC self-renewal are not well characterized. By investigating DU145 sphere cells, a population of prostate cancer cells with stem-like properties, we report here that epidermal growth factor receptor (EGFR) signaling plays a critical role in the propagation of DU145 PCSCs. Activation of EGFR signaling via addition of EGF and ectopic expression of a constitutively-active EGFR mutant (EGFRvIII) increased sphere formation. Conversely, inhibition of EGFR signaling by using EGFR inhibitors (AG1478 and PD168393) and knockdown of EGFR significantly inhibited PCSC self-renewal. Consistent with the MEK-ERK pathway being a major target of EGFR signaling, activation of the MEK-ERK pathway contributed to EGFR-facilitated PCSC propagation. Modulation of EGFR signaling affected extracellular signal-related kinase (ERK) activation. Inhibition of ERK activation through multiple approaches, including treatment with the MEK inhibitor U0126, ectopic expression of dominant-negative MEK1(K97M), and knockdown of either ERK1 or ERK2 resulted in a robust reduction in PCSC propagation. Collectively, the present study provides evidence that EGFR signaling promotes PCSC self-renewal, in part, by activating the MEK-ERK pathway. © 2013 Rybak et al.


Bruce A.,McMaster University | Bruce A.,Father Sean oSullivan Research Institute | Bruce A.,St Josephs Hospital | Rybak A.P.,McMaster University | And 2 more authors.
PLoS ONE | Year: 2014

The cytochrome b5 domain containing 2 (CYB5D2; Neuferricin) protein has been reported to bind heme, however, the critical residues responsible for heme-binding are undefined. Furthermore, the relationship between heme-binding and CYB5D2-mediated intracellular functions remains unknown. Previous studies examining heme-binding in two cytochrome b5 heme-binding domain-containing proteins, damage-associated protein 1 (Dap1; Saccharomyces cerevisiae) and human progesterone receptor membrane component 1 (PGRMC1), have revealed that conserved tyrosine (Y) 73, Y79, aspartic acid (D) 86, and Y127 residues present in human CYB5D2 may be involved in heme-binding. CYB5D2 binds to type b heme, however, only the substitution of glycine (G) at D86 (D86G) within its cytochrome b5 heme-binding (cyt-b5) domain abolished its heme-binding ability. Both CYB5D2 and CYB5D2(D86G) localize to the endoplasmic reticulum. Ectopic CYB5D2 expression inhibited cell proliferation and anchorage-independent colony growth of HeLa cells. Conversely, CYB5D2 knockdown and ectopic CYB5D2(D86G) expression increased cell proliferation and colony growth. As PGRMC1 has been reported to regulate the expression and activities of cytochrome P450 proteins (CYPs), we examined the role of CYB5D2 in regulating the activities of CYPs involved in sterol synthesis (CYP51A1) and drug metabolism (CYP3A4). CYB5D2 co-localizes with cytochrome P450 reductase (CYPOR), while CYB5D2 knockdown reduced lanosterol demethylase (CYP51A1) levels and rendered HeLa cells sensitive to mevalonate. Additionally, knockdown of CYB5D2 reduced CYP3A4 activity. Lastly, CYB5D2 expression conferred HeLa cell survival from chemotherapeutic agents (paclitaxel, cisplatin and doxorubicin), with its ability to promote survival being dependent on its heme-binding ability. Taken together, this study provides evidence that heme-binding is critical for CYB5D2 in regulating HeLa cell growth and survival, with endogenous CYB5D2 being required to modulate CYP activities. Copyright: © 2014 Bruce, Rybak.


Lin X.,McMaster University | Lin X.,Father Sean oSullivan Research Institute | Lin X.,St Josephs Hospital | Lin X.,Central South University | And 4 more authors.
Current Medicinal Chemistry | Year: 2013

Diabetic nephropathy (DN) is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD). Approximately, one third of diabetic patients develop diabetic nephropathy. As diabetes and its associated metabolic diseases are becoming epidemic, DN is emerging as a major health threat to humans. Currently, there are no effective therapeutic treatments for the disease. As a result, most DN cases progress to ESRD; patients with ESRD will need to undergo renal replacement through either dialysis or kidney transplantation. Therefore, developing new and effective means to control DN has been a major focus in the diabetes research. DN is a complex disease with pathological changes occurred in the glomerulus and renal tubules. It is, nonetheless, widely believed that the primary defects lie in the glomeruli, which lead to disrupting the integrity of the glomerular filtration barrier. While a variety of factors contribute to the impairment of glomerular filtration function, a large body of evidence demonstrates that damage in podocytes is the leading cause. Renal fibrosis plays critical roles in promoting DN progression. The primary mechanism responsible for renal fibrosis is abnormal activation of the transforming growth factor (TGF)-β pathway. Based on this understanding of DN pathogenesis, one strategy to control DN is to specifically protect podocytes from diabetes-induced injuries and to inhibit TGF-β signaling using gene therapy methodology. In this review, we will discuss the current research effort in developing gene therapy for DN. © 2013 Bentham Science Publishers.


PubMed | McMaster University, Father Sean OSullivan Research Institute and Shenzhen 2nd Peoples Hospital
Type: | Journal: Oncotarget | Year: 2016

Evidence supports the upregulation of MUC1 in prostate cancer (PC). However, this has not been thoroughly investigated. We report here an association of MUC1 upregulation with PC metastasis and the development of castration resistant PC (CRPC). MUC1 expression was specifically increased in DU145 cell-derived PC stem-like cells (PCSLCs) in comparison to their non-PCSLCs counterparts. While immunohistochemistry staining of 34 primary PCs revealed variability in MUC1 expression, Nanostring technology demonstrated elevated MUC1 mRNA levels in 4 of 7 PCs compared to their normal matched tissues. By analyzing MUC1 mRNA levels and gene copy number (GCN) using the OncomineTM database, elevations in MUC1 mRNA in 82 metastases versus 280 primary PCs and in MUC1 GCN in 37 metastases over 181 primary tumors were demonstrated. Analysis of genomic datasets within cBioPortal revealed increases in MUC1 GCN in 2% (6/333) of primary PCs, 6% (9/150) of metastatic PCs, and 33% (27/82) of CRPCs; in comparison, the respective increase in androgen receptor (AR) GCN was 1%, 63%, and 56%, revealing a specific increase in MUC1 GCN for CRPC. Furthermore, a 25-gene MUC1 network was amplified in 52% of CRPCs compared to 69% of CRPCs displaying increases in an AR co-regulator group. While genomic alterations in the MUC1 network largely overlap with those in the AR group, 18 CRPCs (66.7% being neuroendocrine PC) showed genomic alterations only in the MUC1 network. Moreover, genomic alterations in the MUC1 network correlated with PC relapse. Collectively, our observations suggest a combination therapy involving MUC1-based immunotherapy and androgen deprivation.


Yan J.,McMaster University | Yan J.,Father Sean OSullivan Research Institute | Yan J.,The Hamilton Center for Kidney Research | Tang D.,McMaster University | And 2 more authors.
Experimental Cell Research | Year: 2014

Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. © 2014 Elsevier Inc.

Loading Father Sean OSullivan Research Institute collaborators
Loading Father Sean OSullivan Research Institute collaborators