Entity

Time filter

Source Type


Rybak A.P.,McMaster University | Rybak A.P.,Father Sean OSullivan Research Institute | Rybak A.P.,The Hamilton Center for Kidney Research | Tang D.,McMaster University | And 2 more authors.
Cellular Signalling | Year: 2013

SOX2 is an essential transcription factor for stem cells and plays a role in tumorigenesis, however its role in prostate cancer stem cells (PCSCs) remains unclear. We report here a significant upregulation of SOX2 at both mRNA and protein levels in DU145 PCSCs propagated as suspension spheres in vitro. The expression of SOX2 in DU145 PCSCs is positively regulated by epidermal growth factor receptor (EGFR) signaling. Activation of EGFR signaling, following the addition of epidermal growth factor (EGF) or ectopic expression of a constitutively-active EGFR mutant (EGFRvIII), increased SOX2 expression and the self-renewal of DU145 PCSCs. Conversely, a small molecule EGFR inhibitor (AG1478) blocked EGFR activation, reduced SOX2 expression and inhibited PCSC self-renewal activity, implicating SOX2 in mediating EGFR-dependent self-renewal of PCSCs. In line with this notion, ectopic SOX2 expression enhanced EGF-induced self-renewal of DU145 PCSCs, while SOX2 knockdown reduced PCSC self-renewal with EGF treatment no longer capable of enhancing their propagation. Furthermore, SOX2 knockdown reduced the capacity of DU145 PCSCs to grow under anchorage-independent conditions. Finally, DU145 PCSCs generated xenograft tumors more aggressively with elevated levels of SOX2 expression compared to xenograft tumors derived from non-PCSCs. Collectively, we provide evidence that SOX2 plays a critical role in EGFR-mediated self-renewal of DU145 PCSCs. © 2013 Elsevier Inc. Source


Yan J.,McMaster University | Yan J.,Father Sean OSullivan Research Institute | Yan J.,The Hamilton Center for Kidney Research | Tang D.,McMaster University | And 2 more authors.
Experimental Cell Research | Year: 2014

Despite the development of chemoresistance as a major concern in prostate cancer therapy, the underlying mechanisms remain elusive. In this report, we demonstrate that DU145-derived prostate cancer stem cells (PCSCs) progress slowly with more cells accumulating in the G1 phase in comparison to DU145 non-PCSCs. Consistent with the important role of the AKT pathway in promoting G1 progression, DU145 PCSCs were less sensitive to growth factor-induced activation of AKT in comparison to non-PCSCs. In response to etoposide (one of the most commonly used chemotherapeutic drugs), DU145 PCSCs survived significantly better than non-PCSCs. In addition to etoposide, PCSCs demonstrated increased resistance to docetaxel, a taxane drug that is commonly used to treat castration-resistant prostate cancer. Etoposide produced elevated levels of γH2AX and triggered a robust G2/M arrest along with a coordinated reduction of the G1 population in PCSCs compared to non-PCSCs, suggesting that elevated γH2AX plays a role in the resistance of PCSCs to etoposide-induced cytotoxicity. We have generated xenograft tumors from DU145 PCSCs and non-PCSCs. Consistent with the knowledge that PCSCs produce xenograft tumors with more advanced features, we were able to demonstrate that PCSC-derived xenograft tumors displayed higher levels of γH2AX and p-CHK1 compared to non-PCSC-produced xenograft tumors. Collectively, our research suggests that the elevation of DNA damage response contributes to PCSC-associated resistance to genotoxic reagents. © 2014 Elsevier Inc. Source


Lin X.,McMaster University | Lin X.,Father Sean OSullivan Research Institute | Lin X.,Hamilton Center for Kidney Research | Lin X.,Central South University | And 4 more authors.
Current Medicinal Chemistry | Year: 2013

Diabetic nephropathy (DN) is a major complication of diabetes and the leading cause of end-stage renal disease (ESRD). Approximately, one third of diabetic patients develop diabetic nephropathy. As diabetes and its associated metabolic diseases are becoming epidemic, DN is emerging as a major health threat to humans. Currently, there are no effective therapeutic treatments for the disease. As a result, most DN cases progress to ESRD; patients with ESRD will need to undergo renal replacement through either dialysis or kidney transplantation. Therefore, developing new and effective means to control DN has been a major focus in the diabetes research. DN is a complex disease with pathological changes occurred in the glomerulus and renal tubules. It is, nonetheless, widely believed that the primary defects lie in the glomeruli, which lead to disrupting the integrity of the glomerular filtration barrier. While a variety of factors contribute to the impairment of glomerular filtration function, a large body of evidence demonstrates that damage in podocytes is the leading cause. Renal fibrosis plays critical roles in promoting DN progression. The primary mechanism responsible for renal fibrosis is abnormal activation of the transforming growth factor (TGF)-β pathway. Based on this understanding of DN pathogenesis, one strategy to control DN is to specifically protect podocytes from diabetes-induced injuries and to inhibit TGF-β signaling using gene therapy methodology. In this review, we will discuss the current research effort in developing gene therapy for DN. © 2013 Bentham Science Publishers. Source


Wei F.,McMaster University | Wei F.,Father Sean OSullivan Research Institute | Wei F.,The Hamilton Center for Kidney Research | Wei F.,Guangdong Pharmaceutical University | And 8 more authors.
Cellular Signalling | Year: 2010

The MEK-ERK pathway plays a role in DNA damage response (DDR). This has been thoroughly studied by modulating MEK activation. However, much less has been done to directly examine the contributions of ERK1 and ERK2 kinases to DDR. Etoposide induces G2/M arrest in a variety of cell lines, including MCF7 cells. DNA damage-induced G2/M arrest depends on the activation of the protein kinase ataxia-telangiectasia mutated (ATM). ATM subsequently activates CHK2 by phosphorylating CHK2 threonine 68 (T68) and CHK2 inactivates CDC25C via phosphorylation of its serine 216 (S216), resulting in G2/M arrest. To determine the contribution of ERK1 and ERK2 to etoposide-induced G2/M arrest, we individually knocked-down ERK1 and ERK2 in MCF7 cells using specific small interfering RNA (siRNA). Knockdown of either kinases significantly reduced ATM activation in response to etoposide treatment, and thereby attenuated phosphorylation of the ATM substrates, including the S139 of H2AX (γH2AX), p53 S15, and CHK2 T68. Consistent with these observations, knockdown of either ERK1 or ERK2 reduced etoposide-induced CDC25C S216 phosphorylation and significantly compromised etoposide-induced G2/M arrest in MCF7 cells. Taken together, we demonstrated that both ERK1 and ERK2 kinases play a role in etoposide-induced G2/M arrest by facilitating activation of the ATM pathway. These observations suggest that a cellular threshold level of ERK kinase activity is required for the proper checkpoint activation in MCF7 cells. © 2010 Elsevier Inc. Source


Lin X.,McMaster University | Lin X.,Father Sean OSullivan Research Institute | Lin X.,Hamilton Center for Kidney Research | Yan J.,McMaster University | And 5 more authors.
Histology and Histopathology | Year: 2013

DNA damage response (DDR) is the critical surveillance mechanism in maintaining genome integrity. The mechanism activates checkpoints to prevent cell cycle progression in the presence of DNA lesions, and mediates lesion repair. DDR is coordinated by three apical PI3 kinase related kinases (PIKKs), including ataxia-telangiectasia mutated (ATM), ATMand Rad3-related (ATR), and DNA-PKcs (the catalytic subunit of the DNA dependent protein kinase). These kinases are activated in response to specific DNA damage or lesions, resulting in checkpoint activation and DNA lesion repair. While it is clear that the pathways of ATM, ATR, and DNA-PK are the core components of DDR, there is accumulating evidence revealing the involvement of other cellular pathways in regulating DDR; this is in line with the concept that in addition to being a nuclear event DDR is also a cellular process. One of these pathways is the extracellular signalregulated kinase (ERK) MAPK (mitogen-activated protein kinase) pathway. ERK is a converging point of multiple signal transduction pathways involved in cell proliferation, differentiation, and apoptosis. Adding to this list of pathways is the recent development of ERK in DDR. The ERK kinases (ERK1 and ERK2) contribute to the proper execution of DDR in terms of checkpoint activation and the repair of DNA lesions. This review summarizes the contributions of ERK to DDR with emphasis on the relationship of ERK kinases with the activation of ATM, ATR, and DNA-PKcs. Source

Discover hidden collaborations