Fachhochschule Nordwestschweiz

Windisch, Switzerland

Fachhochschule Nordwestschweiz

Windisch, Switzerland

Time filter

Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: MG-4.1-2014 | Award Amount: 25.11M | Year: 2015

The project HERCULES-2 is targeting at a fuel-flexible large marine engine, optimally adaptive to its operating environment. The objectives of the HERCULES-2 project are associated to 4 areas of engine integrated R&D: Improving fuel flexibility for seamless switching between different fuel types, including non-conventional fuels. Formulating new materials to support high temperature component applications. Developing adaptive control methodologies to retain performance over the powerplant lifetime. Achieving near-zero emissions, via combined integrated aftertreatment of exhaust gases. The HERCULES-2 is the next phase of the R&D programme HERCULES on large engine technologies, which was initiated in 2004 as a joint vision by the two major European engine manufacturer groups MAN and WARTSILA. Three consecutive projects namely HERCULES - A, -B, -C spanned the years 2004-2014. These three projects produced exceptional results and received worldwide acclaim. The targets of HERCULES-2 build upon and surpass the targets of the previous HERCULES projects, going beyond the limits set by the regulatory authorities. By combining cutting-edge technologies, the Project overall aims at significant fuel consumption and emission reduction targets using integrated solutions, which can quickly mature into commercially available products. Focusing on the applications, the project includes several full-scale prototypes and shipboard demonstrators. The project HERCULES-2 comprises 4 R&D Work Package Groups (WPG): - WPG I: Fuel flexible engine - WPG II: New Materials (Applications in engines) - WPG III: Adaptive Powerplant for Lifetime Performance - WPG IV: Near-Zero Emissions Engine The consortium comprises 32 partners of which 30% are Industrial and 70% are Universities / Research Institutes. The Budget share is 63% Industry and 37% Universities. The HERCULES-2 proposal covers with authority and in full the Work Programme scope B1 of MG.4.1-2014.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: SC5-13-2016-2017 | Award Amount: 7.71M | Year: 2016

Scandium (Sc) is one of the highest valued elements in the periodic table and an element which is usually grouped in REEs as it shares many characteristics with Yttrium. Scandium technological applications are unique, as it is a key component in producing Solid Oxide Fuel Cells (Scandia-Stabilized-Zirconia solid electrolyte layer) or high strength Aluminum alloys used in aerospace and 3D printing applications (SCALMALLOY). Yet Scandium supply is limited due to its scarcity and the high cost of its production, which currently takes place in Asia and Russia. Europe has no production of Scandium, but is home to many Sc industrial end-users (Airbus, II-VI, KBM Affilips and others). In fact end-users like Airbus, are not deploying their Sc applications due to the lack of a secure Sc supply. The SCALE project sets about to develop and secure a European Sc supply chain through the development of technological innovations which will allow the extraction of Sc from European industrial residues. Bauxite Residues from alumina production (5 Million tons on dry basis per year in Europe) and acid wastes from TiO2 pigment production (1.4 Million tons on dry basis per year in Europe) have Sc concentrations which are considered exploitable, given a viable extraction technology. SCALE develops and demonstrates the value chain starting from residue and finishing to high tech end-product. In more detail: SCALE develops innovative technologies that can extract economically and sustainably Sc from dilute mediums (<100 mg/L) and upgrade them to pure oxides, metals and alloys at lower energy or material cost. SCALE extracts along with Sc all other REEs found in the by-products (AoGs BR on an annual base contain 10% of the European REE raw material imports) The industrially driven SCALE consortium covers the entire Sc value chain with 7 major European industries and further features 8 academic and research institutes and 4 engineering companies with track records in RTD.


Grant
Agency: European Commission | Branch: H2020 | Program: MSCA-ITN-ETN | Phase: MSCA-ITN-2015-ETN | Award Amount: 3.90M | Year: 2016

The European Pharma industry is a major contributor to EU well-being, both in public health and economic (sales >200 billion /year) terms. To maintain global leadership, it must respond to challenges from low-cost producers e.g. China by bringing new drug molecules to market in a streamlined, cost-effective manner. This strategy is underscored by recent initiatives of European regulators to expedite the approval of breakthrough drugs so patients can gain earlier access to life-saving drugs. To realise these goals, scientists with an integral understanding of drug development and regulatory approval processes are urgently needed. PEARRL will train 15 Early Stage Researchers (ESR) who can develop new bio-enabling formulations (better drugs), biorelevant and in silico methods to predict formulation performance in vivo (streamlined development) and serve as communication bridgers between research and regulatory science (accelerated approval), thus bringing Pharma and regulatory objectives to fruition. PEARRL brings a multi-sectorial team, comprising key European regulatory authorities, academic leaders in bio-enabling formulations and biopharmaceutics tools, and an array of Pharma companies with a wealth of combined experience in bringing molecules to market, together for the first time to deliver a unique research and training programme. Key PEARRL elements are individual research projects with synergistic output; exposure of all ESR to academia, industry and regulatory in secondments; and ongoing innovative learning via Online Portals, Science Slams and Boot Camps. Key PEARRL impacts will be availability of excellent pharmaceutical researchers; streamlined drug development with a higher success rate for the industrial partners; enriched academic research through cooperation with industry and regulatory; earlier availability of breakthrough medicines to patients; a competitive pharma industry in Europe and contributions to European public health interests.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: ICT-01-2016 | Award Amount: 8.59M | Year: 2016

The Bonseyes project aims to develop a platform consisting of a Data Marketplace, Deep Learning Toolbox, and Developer Reference Platforms for organizations wanting to adopt Artificial Intelligence in low power IoT devices (edge computing), embedded computing systems, or data center servers (cloud computing). It will bring about orders of magnitude improvements in efficiency, performance, reliability, security, and productivity in the design and programming of Systems of Artificial Intelligence that incorporate Smart Cyber Physical Systems while solving a chicken-egg problem for organizations who lack access to Data and Models. Its open software architecture will facilitate adoption of the whole concept on a wider scale. It aims to address one of the most significant trends in the Internet of Things which is the shifting balance between edge computing and cloud computing. The early days of the IoT have been characterized by the critical role of cloud platforms as application enablers. Intelligent systems have largely relied on the cloud level for their intelligence, and the actual devices of which they consist have been relatively unsophisticated. This old premise is currently being shaken up, as the computing capabilities on the edge level advance faster than those of the cloud level. This paradigm shiftfrom the connected device paradigm to the intelligent device paradigm opens up numerous opportunities. To evaluate the effectiveness, technical feasibility, and to quantify the real-world improvements in efficiency, security, performance, effort and cost of adding AI to products and services using the Bonseyes platform, four complementary demonstrators will be built: Automotive Intelligent Safety, Automotive Cognitive Computing, Consumer Emotional Virtual Agent, and Healthcare Patient Monitoring. Bonseyes platform capabilities are aimed at being aligned with the European FI-PPP activities and take advantage of its flagship project FIWARE.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: BG-04-2014 | Award Amount: 7.40M | Year: 2015

INMARE stands for Industrial Applications of Marine Enzymes: Innovative screening and expression platforms to discover and use the functional protein diversity from the sea. It is a collaborative Innovation Action to streamline the pathways of discovery and industrial applications of new marine enzymes and bioactives for targeted production of fine chemicals, drugs and in environmental clean-up applications. The INMARE consortium will unify the multidisciplinary expertise and facilities of academic and industry partners. This will include integrating the following core activities: advanced technologies to access and sample unique marine biodiversity hot-spots; state-of-the art technologies for construction of metagenomic libraries; innovative enzyme screening assays and platforms; cutting-edge sequence annotation pipelines and bioinformatics resources; high-end activity screening technology; bioanalytical and bioprocess engineering facilities and expertise, nanoparticle-biocatalysts; high-quality protein crystallization and structural analysis facilities and experts in IP management for biotechnology. The companies involved in the project are market leaders in enzyme production and biocatalysis processes designed to efficiently deliver safer (pharmaceuticals) cheaper (agriculture) and biobased (biopolymers) products. They also have impressive track record in environmental clean-up technologies and are committed to promoting public understanding, awareness and dissemination of scientific research. The main emphasis will be focused on streamlining and shortening the pipelines for enzyme and bioactive compound discovery towards industrial applications through the establishing of marine enzyme collections with a high proportion of enzymes-allrounders. The project will also prioritize the identification of novel lead products and the delivery of improved prototypes for new biocatalytic processes.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: WATER-1b-2015 | Award Amount: 10.74M | Year: 2016

The AquaNES project will catalyse innovations in water and wastewater treatment processes and management through improved combinations of natural and engineered components. Among the demonstrated solutions are natural treatment processes such as bank filtration (BF), managed aquifer recharge (MAR) and constructed wetlands (CW) plus engineered pre- and post-treatment options. The project focuses on 13 demonstration sites in Europe, India and Israel covering a repre-sentative range of regional, climatic, and hydrogeological conditions in which different combined natural-engineered treatment systems (cNES) will be demonstrated through active collaboration of knowledge and technology providers, water utilities and end-users. Our specific objectives are to demonstrate the benefits of post-treatment options such as membranes, activated carbon and ozonation after bank filtration for the production of safe drinking water to validate the treatment and storage capacity of soil-aquifer systems in combination with oxidative pre-treatments to demonstrate the combination of constructed wetlands with different technical post- or pre-treatment options (ozone or bioreactor systems) as a wastewater treatment option to evidence reductions in operating costs and energy consumption to test a robust risk assessment framework for cNES to deliver design guidance for cNES informed by industrial or near-industrial scale expe-riences to identify and profile new market opportunities in Europe and overseas for cNES The AquaNES project will demonstrate combined natural-engineered treatment systems as sus-tainable adaptations to issues such as water scarcity, excess water in cities and micro-pollutants in the water cycle. It will thus have impact across the EIP Waters thematic priorities and cross-cutting issues, particularly on Water reuse & recycling, Water and wastewater treatment, Water-energy nexus, Ecosystem services, Water governance, and DSS & monitoring.


Climate change and population growth are expected to exacerbate the water crisis of Mediterranean African Countries (MACs), where agriculture accounts for 80-85% of freshwater consumption. The aim of MADFORWATER is to develop a set of integrated technological and management solutions to enhance wastewater treatment, reuse for irrigation and water efficiency in agriculture in three MACs (Tunisia, Morocco and Egypt). MADFORWATER will develop and adapt to three main hydrological basins in the selected MACs technologies for the production of irrigation-quality water from drainage canals, municipal, agro-industrial and industrial wastewaters, and technologies for water efficiency and reuse in agriculture, initially validated at laboratory scale. Selected technologies will be further adapted and validated in four field pilot plants of integrated wastewater treatment/reuse. Integrated strategies for wastewater treatment and reuse targeted to the selected basins will be developed, and guidelines for the development of integrated water management strategies in other basins of the three target MACs will be produced, considering climate change, population increase and economic growth scenarios. The social and technical suitability of the developed technologies and non-technological instruments in relation to the local context will be evaluated with the participation of MAC stakeholders and partners. Guidelines on economic instruments and policies for the effective implementation of the proposed water management solutions in the target MACs will be developed. The project will lead to a relevant long-term impact in Egypt, Morocco and Tunisia in terms of increased wastewater treatment, wastewater reuse, food production and income in the agricultural and water treatment sectors, and decreased groundwater exploitation, water pollution and food contamination. The MADFORWATER consortium consists of 18 partners, 5 of which from the 3 MACs and 1 from China.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: SPIRE-01-2016 | Award Amount: 7.62M | Year: 2016

INSPIREWATER demonstrates a holistic approach for water management in the process industry using innovative technology solutions from European companies to increase water and resource efficiency in the process industry. This will put Europe as a leader on the world market for segments in industrial water treatment which will create new high skilled jobs in Europe. With extended collaboration between technology providers including innovative SMEs, world-wide active companies in the chemical and steel industries and research organizations, this project also contributes to the aims of the SPIRE SRA, the European Innovation Partnership (EIP) on Water and to the aims of the Commissions Roadmap on Resource efficiency, supporting effective implementation of European directives and policies in the water management area. INSPIREWATER addresses non-technical barriers as well as technical, as innovation needs both components and demonstrates them in the steel and chemical industry. A flexible system for water management in industries that can be integrated to existing systems is worked out and demonstrated to facilitate implementation of technical innovations. Technical innovations in the area of selected membrane technologies, strong field magnetic particle separator, and a catalyst to prevent biofouling are demonstrated, including valorisation of waste heat. This will increase process water efficiency as well as resource, water and energy savings in the process industry. The development and demonstration work is combined with a strong emphasis on exploitation and dissemination. Specific exploitation strategies are developed for the different solutions in INSPIREWATER. Dissemination targets different target groups: Stakeholders in different process industry also beyond the involved ones, e.g. Pulp and paper, but also policy makers based on the findings of the project.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: GV-02-2016 | Award Amount: 3.71M | Year: 2016

A large proportion of the total number of particles emitted from direct injection engines are below 23 nm and although the EU aims to regulate those emissions and impose limits for new light duty vehicles, this is not yet possible due to the absence of accurate quantification methods, especially under real driving conditions. The main reason for this is the absence of adequate knowledge regarding the nature of sub-23 nm particles from different engine/fuel combinations under different operating conditions. SUREAL-23 aims to overcome such barriers by introducing novel measurement technology for concentration/size/composition measurements. The recently established supercontinuum laser technology will be coupled to photoacoustic analysis and will also be employed for photoelectric ionization aerosol charging to achieve real-time, composition size-specific analysis of the particles. In parallel, state of the art aerosol measurement techniques will be advanced for better compatibility with sub-23 nm exhaust particles as well as on-board use. The developed instrumentation will assess sub-23 nm particle emissions from both Diesel and GDI vehicles accounting for effects of the fuel, lubricants, aftertreatment and driving conditions for existing and near-future vehicle configurations. The most suitable concepts will be developed for PN-PEMS applications and evaluated accordingly. The project will provide measurement technologies that will complement and extend established particle measurement protocols, sustaining the extensive investments that have already been made by industry and regulation authorities. The project will deliver systematic characterization of sub 23-nm particles to facilitate future particle emission regulations as well as to assess any potential trade-off between advances in ICE technology towards increased efficiency and emissions. The consortium consists of European and US organisations, which are leaders in the field of aerosol and particle technology.


Grant
Agency: European Commission | Branch: H2020 | Program: RIA | Phase: EUK-02-2016 | Award Amount: 1.78M | Year: 2016

While the Internet of Things is addressing a multiplicity of still-emerging standards and Alliance specifications with efforts to structure them into reference architectures, the Wise-IoT project gathers lead contributors from Europe and Korea to on-going major global IoT standardisation activities with the objective to strengthen and expand emerging IoT standards and reference implementation using feedback from user-centric and context-aware pilots. Based on morphing mediation gateways concept, a trust-based recommendation system is proposed, leveraging upon Context Information APIs enabling end-to-end semantic interoperability and the dynamic distribution of analytic functions over a proposed Global IoT Services (GIoTS). These GIoTS provide IoT virtualisation and interaction with systems beyond IoT together with trust building and management capabilities. Six testbeds from Europe and South Korea will be federated to implement smart city, leisure and healthcare pilots demonstrating GIoTS based applications roaming capabilities across continents. An iterative development approach is being implemented to allow requirement and architecture adjustments as well as alignment and contributions back to on-going standardisation activities through submissions in technical committees and interoperability events support. A strong plan for dissemination has been set-up and will have its peak during the trials to be run at PyeongChang Olympic and Paralympic Games. The consortium composed of prestigious research institutes, SMEs and large industries from Europe and Korea and will work in tandem to contribute to the success of the Wise-IoT project. Wise-IoT will give a particular attention to create an environment encouraging European and Korean SMEs and startups to enter the IoT industry by enabling access to a unified platform where interoperability among heterogeneous data in smart environments will be provided.

Loading Fachhochschule Nordwestschweiz collaborators
Loading Fachhochschule Nordwestschweiz collaborators