Exploratory Research for Advanced Technology

Saitama, Japan

Exploratory Research for Advanced Technology

Saitama, Japan

Time filter

Source Type

News Article | May 11, 2017
Site: www.eurekalert.org

Nagoya, Japan - Chemists have tried to synthesize carbon nanobelts for more than 60 years, but none have succeeded until now. A team at Nagoya University reported the first organic synthesis of a carbon nanobelt in Science. Carbon nanobelts are expected to serve as a useful template for building carbon nanotubes and open a new field of nanocarbon science. The new nanobelt, measuring 0.83 nanometer (nm) in diameter, was developed by researchers at Nagoya University's JST-ERATO Itami Molecular Nanocarbon Project, and the Institute of Transformative Bio-Molecules (ITbM). Scientists around the world have tried to synthesize carbon nanobelts since the 1950s and Professor Kenichiro Itami's group has worked on its synthesis for 12 years. "Nobody knew whether its organic synthesis was even possible or not," says Segawa, one of the leaders of this study who had been involved in its synthesis for 7 and a half years. "However, I had my mind set on the synthesis of this beautiful molecule." Carbon nanobelts are belt-shaped molecules composed of fused benzene rings, which are aromatic rings consisting of six carbon atoms. Carbon nanobelts are a segment of carbon nanotubes, which have various applications in electronics and photonics due to their unique physical characteristics. Current synthetic methods produce carbon nanotubes with inconsistent diameters and sidewall structures, which changes their electrical and optical properties. This makes it extremely difficult to isolate and purify a single carbon nanotube that has a specific diameter, length and sidewall structure. Therefore, being able to precisely control the synthesis of structurally uniform carbon nanotubes will help develop novel and highly functional materials. Carbon nanobelts have been identified as a way to build structurally uniform carbon nanotubes. However, synthesizing carbon nanobelts is challenging due to their extremely high strain energies. This is because benzene is stable when flat, but becomes unstable when they are distorted by fusion of the rings. To overcome this problem, Guillaume Povie, a postdoctoral researcher of the JST-ERATO project, Yasutomo Segawa, a group leader of the JST-ERATO project, and Kenichiro Itami, the director of JST-ERATO project and the center director of ITbM, have succeeded in the first chemical synthesis of a carbon nanobelt from a readily available precursor, p-xylene (a benzene molecule with two methyl groups in the 1,4- (para-) position) in 11 steps. The key to this success is their synthetic strategy based on the belt-shaped formation from a macrocycle precursor with relatively low ring strain. In their strategy, the team prepared a macrocycle precursor from p-xylene in 10 steps, and formed the belt-shaped aromatic compound by a coupling reaction. Nickel was essential to mediate the coupling process. "The most difficult part of this research was this key coupling reaction of the macrocycle precursor," says Povie. "The reaction did not proceed well day after day and it took me three to four months for testing various conditions. I have always believed where there's a will, there's a way." In 2015, Itami launched a new initiative in his ERATO project to focus particularly on the synthesis of the carbon nanobelt. At the so-called "belt festival," various new synthetic routes for the carbon nanobelt were proposed and more than 10 researchers were involved in the project. On September 28, 2016, exactly a year after the start of the festival, the carbon nanobelt structure was finally revealed by X-ray crystallography in front of the Itami group members. Everyone held their breath while staring at the screen during X-ray analysis, and cheered when the cylindrical shape image of the carbon nanobelt appeared on the screen. Itami, Segawa and Povie expressed their joy with a high five (movie: https:/ ). "It was one of the most exciting moments in my life and I will never forget it," says Itami. "Since this is the result of a decade-long study, I greatly appreciate all the past and current members of my group for their support and encouragement. Thanks to their skill, toughness, sense and strong will of all members, we achieved this successful result." The synthesized carbon nanobelt is a red-colored solid and exhibits deep red fluorescence. Analysis by X-ray crystallography revealed that the carbon nanobelt has a cylindrical shape in the same manner as carbon nanotubes. The researchers also measured its light absorption and emission, electric conductivity and structural rigidity by ultraviolet-visible absorption fluorescence, and Raman spectroscopic studies, as well as theoretical calculations. "Actually, the synthesis part was finished last August but I could not rest until I was able to confirm the X-ray structure of the carbon nanobelt," says Povie. "I was really happy when I saw the X-ray structure." The carbon nanobelt will be released to the market in the future. "We are looking forward to discovering new properties and functionalities of the carbon nanobelt with researchers from all over the world," say Segawa and Itami. This article "Synthesis of a carbon nanobelt" by Guillaume Povie, Yasutomo Segawa, Taishi Nishihara, Yuhei Miyauchi and Kenichiro Itami is published online in Science. DOI: 10.1126/science.aam8158 JST-ERATO Itami Molecular Nanocarbon Project was launched at Nagoya University in April 2014. This is a 5-year project that seeks to open the new field of nanocarbon science. This project entails the design and synthesis of as-yet largely unexplored nanocarbons as structurally well-defined molecules, and the development of novel, highly functional materials based on these nanocarbons. Researchers combine chemical and physical methods to achieve the controlled synthesis of well-defined uniquely structured nanocarbon materials, and conduct interdisciplinary research encompassing the control of molecular arrangement and orientation, structural and functional analysis, and applications in devices and biology. The goal of this project is to design, synthesize, utilize, and understand nanocarbons as molecules. The Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. ITbM is one of the research centers of the Japanese MEXT (Ministry of Education, Culture, Sports, Science and Technology) program, the World Premier International Research Center Initiative (WPI). The aim of ITbM is to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at ITbM is carried out in a "Mix-Lab" style, where international young researchers from various fields work together side-by-side in the same lab, enabling interdisciplinary interaction. Through these endeavors, ITbM will create "transformative bio-molecules" that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society. ERATO (The Exploratory Research for Advanced Technology), one of the Strategic Basic Research Programs, aims to form a headstream of science and technology, and ultimately contribute to science, technology, and innovation that will change society and the economy in the future. In ERATO, a Research Director, a principal investigator of ERATO research project, establishes a new research base in Japan and recruits young researchers to implement his or her challenging research project within a limited time frame.


News Article | May 15, 2017
Site: www.eurekalert.org

A newly developed printable elastic conductor retains high conductivity even when stretched to as much as five times its original length, says a Japanese team of scientists. The new material, produced in paste-like ink form, can be printed in various patterns on textiles and rubber surfaces as stretchable wiring for wearable devices incorporating sensors, as well as give human skin-like functions to robot exteriors. The development of wearable devices such as those monitoring a person's health or physical performance, like heart rate or muscle activity, is currently underway with some products already on the market. Moreover, with the advent of robots in areas such as health care and retail, in addition to manufacturing, future applications for sensitive elastic conductive material that can withstand high strain from stretching are likely to increase at a fever pitch. "We saw the growing demand for wearable devices and robots," says Professor Takao Someya at the University of Tokyo's Graduate School of Engineering, who supervised the current study. "We felt it was very important to create printable elastic conductors to help meet the need and realize the development of the products," he adds. To achieve a high degree of stretchability and conductivity, the researchers mixed four components to create their elastic conductor. They found that their conductive paste consisting of micrometer-sized silver (Ag) flakes, fluorine rubber, fluorine surfactant--commonly known as a substance that reduces surface tension in liquid--and organic solvent to dissolve the fluorine rubber markedly outperformed the elastic conductor they had previously developed in 2015. Without stretching, printed traces of the new conductor recorded 4,972 siemens per centimeter (S/cm), high conductivity using the common measure for assessing electrical conductance. When stretched by 200 percent, or to three times its original length, conductivity measured 1,070 S/cm, which is nearly six times the value of the previous conductor (192 S/cm). Even when stretched by 400 percent, or to five times its original length, the new conductor retained high conductivity of 935 S/cm, the highest level recorded for this amount of stretching. Magnification by a scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that the high performance of the conductor was due to the self-formation of silver (Ag) nanoparticles--one-thousandth the size of the Ag flakes and dispersed uniformly between the flakes in the fluorine rubber--after the conductive composite paste was printed and heated. "We did not expect the formation of Ag nanoparticles," comments Someya on their surprising discovery. Furthermore, the scientists found that by adjusting variables like the molecular weight of the fluorine rubber, they could control the distribution and population of nanoparticles, while the presence of surfactant and heating accelerated their formation and influenced their size. To demonstrate the feasibility of the conductors, the scientists fabricated fully printed stretchable pressure and temperature sensors--that can sense weak force and measure heat close to body and room temperatures--wired with the printable elastic conductors on textiles. The sensors, which can be installed easily by laminating onto surfaces by hot pressing with heat and pressure, took precise measurements even when stretched by 250 percent. This is enough to accommodate high-stress flexible areas such as elbows and knees on conformable, form-fitting sportswear or joints on robotic arms often designed to surpass human capabilities and thus undergo higher strain. The new material, which is durable and suitable for high-capacity printing methods like stencil or screen printing that can cover large surface areas, points to easy installation, and its properties of forming Ag nanoparticles (which are a fraction of the cost of Ag flakes) when printed provide an economical alternative for realizing a wide range of applications for wearables, robotics and deformable electronic devices. The team is now exploring substitutes for Ag flakes to further reduce costs, while they are also looking at other polymers, like nonfluorine rubbers, and various combinations of materials and processes to fabricate elastic conductors with similar high performance. Naoji Matsuhisa, Daishi Inoue, Peter Zalar, Hanbit Jin, Yorishige Matsuba, Akira Itoh, Tomoyuki Yokota, Daisuke Hashizume, and Takao Someya, Printable Elastic Conductors by in situ Formation of Silver Nanoparticles from Silver Flakes, Nature Materials (2017). URL: http://dx. DOI: 10.1038/nmat4904 Professor Takao Someya Someya Laboratory, Department of Electrical Engineering and Information Systems (EEIS), Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 JAPAN Tel: +81-3-5841-6756 Fax: +81-3-5841-6709 Email: someya@ee.t.u-tokyo.ac.jp Yayoi Miyagawa Public Relations Office, Graduate School of Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 JAPAN Tel: +81-3-5841-1790 Fax: +81-3-5841-0529 Email: kouhou@pr.t.u-tokyo.ac.jp This result is an accomplishment of the Exploratory Research for Advanced Technology (ERATO) research funding program. Project Name: Someya Bio-Harmonized Electronics Project Project Director: Takao Someya, Professor, Graduate School of Engineering, The University of Tokyo Project Period: August 2011 - March 2017 Project Objective: The aim of the project is to realize brand new electronic devices that seamlessly merge biological tissues and electronics together, by making the best use of the unique features of soft and bio-harmonized organic materials, and to subsequently open up new bio-harmonized electronics markets that are closed to conventional electronics relying on inorganic rigid materials represented by silicon. The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at http://www. or follow us on Twitter at @UTokyo_News_en.


News Article | December 28, 2016
Site: www.eurekalert.org

Reproducibility is a necessity for science but has often eluded researchers studying the lifetime of organic light-emitting diodes (OLEDs). Recent research from Japan sheds new light on why: impurities present in the vacuum chamber during fabrication but in amounts so small that they are easily overlooked. Organic light-emitting diodes use a stack of organic layers to convert electricity into light, and these organic layers are most commonly fabricated by heating source materials in vacuum to evaporate and deposit them onto a lower temperature substrate. While issues affecting the efficiency of OLEDs are already well understood, a complete picture of exactly how and why OLEDs degrade and lose brightness over time is still missing. Complicating matters is that devices fabricated with seemingly the same procedures and conditions but by different research groups often degrade at vastly different rates even when the initial performance is the same. Unable to attribute these reproducibility issues to known sources such as the amount of residual water in the chamber and the purity of the starting materials, a report published online in Scientific Reports on December 13, 2016, adds a new piece to the puzzle by focusing on the analysis of the environment in the vacuum chamber. "Although we often idealize vacuums as being clean environments, we detected many impurities floating in the vacuum even when the deposition chamber is at room temperature," says lead author Hiroshi Fujimoto, chief researcher at Fukuoka i3-Center for Organic Photonics and Electronics Research (i3-OPERA) and visiting associate professor of Kyushu University. Because of these impurities in the deposition chamber, the researchers found that the time until an OLED under operation dims by a given amount because of degradation, known as the lifetime, sharply increased for OLEDs that spent a shorter time in the deposition chamber during fabrication. This trend remained even after considering changes in residual water and source material purity, indicating the importance of controlling and minimizing the device fabrication time, a rarely discussed parameter. Research partners at Sumika Chemical Analysis Service Ltd. (SCAS) confirmed an increase of accumulated impurities with time by analyzing the materials that deposited on extremely clean silicon wafers that were stored in the deposition chamber when OLED materials were not being evaporated. Using a technique called liquid chromatography-mass spectrometry, the researchers found that many of the impurities could be traced to previously deposited materials and plasticizers from the vacuum chamber components. "Really small amounts of these impurities get incorporated into the fabricated devices and are causing large changes in the lifetime," says Professor Chihaya Adachi, director of Kyushu University's Center for Organic Photonics and Electronics Research (OPERA), which also took part in the study. In fact, the new results suggest that the impurities amount to less than even a single molecular layer. To improve lifetime reproducibility, a practice often adopted in industry is the use of dedicated deposition chambers for specific materials, but this can be difficult in academic labs, where often only a limited number of deposition systems are available for testing a wide variety of new materials. In these cases, deposition chamber design and cleaning in addition to control of the deposition time are especially important. "This is an excellent reminder of just how careful we need to be to do good, reproducible science," comments Professor Adachi. For more information, see "Influence of vacuum chamber impurities on the lifetime of organic light-emitting diodes," Scientific Reports 6, 38482 (2016); doi: 10.1038/srep38482. This work was performed by research groups at Kyushu University's Center for Organic Photonics and Electronics Research (OPERA), the Fukuoka i3-Center for Organic Photonics and Electronics Research (i3-OPERA), and the Institute of System, Information Technology and Nanotechnology (ISIT) in cooperation with Sumika Chemical Analysis Service Ltd. (SCAS). This research is ongoing in part under the Adachi Molecular Exciton Engineering Project funded by the Exploratory Research for Advanced Technology (ERATO) program of the Japan Science and Technology Agency (JST).


Abstract: Kaho Maeda, Dr. Hideto Ito, Professor Kenichiro Itami of the JST-ERATO Itami Molecular Nanocarbon Project and the Institute of Transformative Bio-Molecules (ITbM) of Nagoya University, and their colleagues have reported in the Journal of the American Chemical Society, on the development of a new and simple strategy, "helix-to-tube" to synthesize covalent organic nanotubes. Organic nanotubes (ONTs) are organic molecules with tubular nanostructures. Nanostructures are structures that range between 1 nm and 100 nm, and ONTs have a nanometer-sized cavity. Various applications of ONTs have been reported, including molecular recognition materials, transmembrane ion channel/sensors, electro-conductive materials, and organic photovoltaics. Most ONTs are constructed by a self-assembly process based on weak non-covalent interactions such as hydrogen bonding, hydrophobic interactions and π-π interactions between aromatic rings. Due to these relatively weak interactions, most non-covalent ONTs possess a relatively fragile structure. Covalent ONTs, whose tubular skeletons are cross-linked by covalent bonding (a bond made by sharing of electrons between atoms) could be synthesized from non-covalent ONTs. While covalent ONTs show higher stability and mechanical strength than non-covalent ONTs, the general synthetic strategy for covalent ONTs was yet to be established. A team led by Hideto Ito and Kenichiro Itami has succeeded in developing a simple and effective method for the synthesis of robust covalent ONTs (tube) by an operationally simple light irradiation of a readily accessible helical polymer (helix). This so-called "helix-to-tube" strategy is based on the following steps: 1) polymerization of a small molecule (monomer) to make a helical polymer followed by, 2) light-induced cross-linking at longitudinally repeating pitches across the whole helix to form covalent nanotubes. With their strategy, the team designed and synthesized diacetylene-based helical polymers (acetylenes are molecules that contain carbon-carbon triple bonds), poly(m-phenylene diethynylene)s (poly-PDEs), which has chiral amide side chains that are able to induce a helical folding through hydrogen-bonding interactions. The researchers revealed that light-induced cross-linking at longitudinally aligned 1,3-butadiyne moieties (a group of molecules that contain four carbons with triple bonds at the first and third carbons) could generate the desired covalent ONT. "This is the first time in the world to show that the photochemical polymerization reaction of diynes is applicable to the cross-linking reaction of a helical polymer," says Maeda, a graduate student who mainly conducted the experiments. The "helix-to-tube" method is expected to be able to generate a range of ONT-based materials by simply changing the arene (aromatic ring) unit in the monomer. "One of the most difficult parts of this research was how to obtain scientific evidence on the structures of poly-PDEs and covalent ONTs," says Ito, one of the leaders of this study. "We had little experience with the analysis of polymers and macromolecules such as ONTs. Fortunately, thanks to the support of our collaborators in Nagoya University, who are specialists in these particular research fields, we finally succeeded in characterizing these macromolecules by various techniques including spectroscopy, X-ray diffraction, and microscopy." "Although it took us about a year to synthesize the covalent ONT, it took another one and a half year to determine the structure of the nanotube," says Maeda. "I was extremely excited when I first saw the transmission electron microscopy (TEM) images, which indicated that we had actually made the covalent ONT that we were expecting," she continues. "The best part of the research for me was finding that the photochemical cross-linking had taken place on the helix for the first time," says Maeda. "In addition, photochemical cross-linking is known to usually occur in the solid phase, but we were able to show that the reaction takes place in the solution phase as well. As the reactions have never been carried out before, I was dubious at first, but it was a wonderful feeling to succeed in making the reaction work for the first time in the world. I can say for sure that this was a moment where I really found research interesting." "We were really excited to develop this simple yet powerful method to achieve the synthesis of covalent ONTs," says Itami, the director of the JST-ERATO project and the center director of ITbM. "The "helix-to-tube" method enables molecular level design and will lead to the synthesis of various covalent ONTs with fixed diameters and tube lengths with desirable functionalities." "We envisage that ongoing advances in the "helix-to-tube" method may lead to the development of various ONT-based materials including electro-conductive materials and luminescent materials," says Ito. "We are currently carrying out work on the "helix-to-tube" methodology and we hope to synthesize covalent ONTs with interesting properties for various applications." About Nagoya University JST-ERATO Itami Molecular Nanocarbon Project The JST-ERATO Itami Molecular Nanocarbon Project was launched at Nagoya University in April 2014. This is a 5-year project that seeks to open the new field of nanocarbon science. This project entails the design and synthesis of as-yet largely unexplored nanocarbons as structurally well-defined molecules, and the development of novel, highly functional materials based on these nanocarbons. Researchers combine chemical and physical methods to achieve the controlled synthesis of well-defined uniquely structured nanocarbon materials, and conduct interdisciplinary research encompassing the control of molecular arrangement and orientation, structural and functional analysis, and applications in devices and biology. The goal of this project is to design, synthesize, utilize, and understand nanocarbons as molecules. About WPI-ITbM The Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. ITbM is one of the research centers of the Japanese MEXT (Ministry of Education, Culture, Sports, Science and Technology) program, the World Premier International Research Center Initiative (WPI). The aim of ITbM is to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at ITbM is carried out in a "Mix-Lab" style, where international young researchers from various fields work together side-by-side in the same lab, enabling interdisciplinary interaction. Through these endeavors, ITbM will create "transformative bio-molecules" that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society. About JST-ERATO ERATO (The Exploratory Research for Advanced Technology), one of the Strategic Basic Research Programs, aims to form a headstream of science and technology, and ultimately contribute to science, technology, and innovation that will change society and the economy in the future. In ERATO, a Research Director, a principal investigator of ERATO research project, establishes a new research base in Japan and recruits young researchers to implement his or her challenging research project within a limited time frame. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


Home > Press > One-pot synthesis towards sulfur-based organic semiconductors A short and simple synthetic route for thiophene-fused aromatic compounds Abstract: Thiophene-fused polycyclic aromatic hydrocarbons (PAHs) are known to be useful as organic semiconductors due to their high charge transport properties. Scientists at Nagoya University have developed a short route to form various thiophene-fused PAHs by simply heating mono-functionalized PAHs with sulfur. This new method is expected to contribute towards the efficient development of novel thiophene-based electronic materials. Dr. Lingkui Meng, Dr. Yasutomo Segawa, Professor Kenichiro Itami of the JST-ERATO Itami Molecular Nanocarbon Project, Institute of Transformative Bio-Molecules (ITbM) of Nagoya University and Integrated Research Consortium on Chemical Sciences, and their colleagues have reported in the Journal of the American Chemical Society, on the development of a simple and effective method for the synthesis of thiophene-fused PAHs. Thiophene-fused PAHs are organic molecules composed of multiple aromatic rings including thiophene. Thiophene is a five-membered aromatic ring containing four carbon atoms and a sulfur atom. Thiophene-fused PAHs are known to be one of the most common organic semiconductors and are used in various electronic materials, such as in transistors, organic thin-film solar cells, organic electro-luminescent diodes and electronic devices. More recently, they have found use in wearable devices due to their lightweight and flexibility. Thienannulation (thiophene-annulation) reactions, a transformation that makes new thiophene rings via cyclization, leads to various thiophene-fused PAHs. Most conventional thienannulation methods require the introduction of two functional groups adjacent to each other to form two reactive sites on PAHs before the cyclization can take place. Thus, multiple steps are required for the preparation of the substrates. As a consequence, a more simple method to access thiophene-fused PAHs is desirable. A team led by Yasutomo Segawa, a group leader of the JST-ERATO project, and Kenichiro Itami, the director of the JST-ERATO project and the center director of ITbM, has succeeded in developing a simple and effective method for the formation of various thiophene-fused PAHs. They have managed to start from PAHs that have only one functional group, which saves the effort of installing another functional group, and have performed the thienannulation reactions using elemental sulfur, a readily available low cost reagent. The reactions can be carried out on a multigram scale and can be conducted in a one-pot two-step reaction sequence starting from an unfunctionalized PAH. This new approach can also generate multiple thiophene moieties in a single reaction. Hence, this method has the advantage of offering a significant reduction in the number of required steps and in the reagent costs for thiophene-fused PAH synthesis compared to conventional methods. The researchers have shown that upon heating and stirring the dimethylformamide solution of arylethynyl group-substituted PAHs and elemental sulfur in air, they were able to obtain the corresponding thiophene-fused PAHs. The arylethynyl group consists of an alkyne (a moiety with a carbon-carbon triple bond) bonded to an aromatic ring. The reaction proceeds via a carbon-hydrogen (C-H) bond cleavage at the position next to the arylethynyl group (called the ortho-position) on PAHs, in the presence of sulfur. As the ortho-C-H bond on the PAH can be cleaved under the reaction conditions, prior functionalization (installation of a functional group) becomes unnecessary. Arylethynyl-substituted PAHs are readily accessible by the Sonogashira coupling, which is a cross-coupling reaction to form carbon-carbon bonds between an alkyne and a halogen-substituted aromatic compound. The synthesis of thiophene-fused PAHs can also be carried out in one-pot, in which PAHs are subjected to a Sonogashira coupling to form arylethynyl-substituted PAHs, followed by direct treatment of the alkyne with elemental sulfur to induce thienannulation. "Actually, we coincidentally discovered this reaction when we were testing different chemical reactions to synthesize a new molecule for the Itami ERATO project," says Yasutomo Segawa, one of the leaders of this study. "At first, most members including myself felt that the reaction may have already been reported because it is indeed a very simple reaction. Therefore, the most difficult part of this research was to clarify the novelty of this reaction. We put in a significant amount of effort to investigate previous reports, including textbooks from more than 50 years ago as well as various Internet sources, to make sure that our reaction conditions had not been disclosed before," he continues. The team succeeded in synthesizing more than 20 thiophene-fused PAHs. They also revealed that multiple formations of thiophene rings of PAHs substituted with multiple arylethynyl groups could be carried out all at once. Multiple thiophene-fused PAHs were generated from three-fold and five-fold thienannulations, which generated triple thia[5]helicene (containing three thiophenes) and pentathienocorannulene (containing five thiophenes), respectively. The pentathienocorannulene was an unprecedented molecule that was synthesized for the first time. "I was extremely happy when I was able to obtain the propeller-shaped triple thia[5]helicene and hat-shaped pentathienocorannulene, because I have always been aiming to synthesize exciting new molecules since I joined Professor Itami's group," says Lingkui Meng, a postdoctoral researcher who mainly conducted the experiments. "We had some problems in purifying the compounds but we were delighted when we obtained the crystal structures of the thiophene compounds, which proved that the desired reactions had taken place." "The best part of this research for me is to discover that our C-H functionalization strategy on PAHs could be applied to synthesize structurally beautiful molecules with high functionalities," says Segawa. "The successful synthesis of a known high-performance organic semiconductive molecule, (2,6-bis(4-n-octylphenyl)- dithieno[3,2-b:2?,3?-d]thiophene (the lower right of Figure 4), from a relatively cheap substrate opens doors to access useful thiophene compounds in a rapid and cost-effective manner." "We hope that ongoing advances in our method may lead to the development of new organic electronic devices, including semiconductor and luminescent materials," say Segawa and Itami. "We are considering the possibilities to make this reaction applicable for making useful thiophene-fused PAHs, which would lead to the rapid discovery and optimization of key molecules that would advance the field of materials science." About Nagoya University JST-ERATO Itami Molecular Nanocarbon Project was launched at Nagoya University in April 2014. This is a 5-year project that seeks to open the new field of nanocarbon science. This project entails the design and synthesis of as-yet largely unexplored nanocarbons as structurally well-defined molecules, and the development of novel, highly functional materials based on these nanocarbons. Researchers combine chemical and physical methods to achieve the controlled synthesis of well-defined uniquely structured nanocarbon materials, and conduct interdisciplinary research encompassing the control of molecular arrangement and orientation, structural and functional analysis, and applications in devices and biology. The goal of this project is to design, synthesize, utilize, and understand nanocarbons as molecules. About WPI-ITbM The Institute of Transformative Bio-Molecules (ITbM) at Nagoya University in Japan is committed to advance the integration of synthetic chemistry, plant/animal biology and theoretical science, all of which are traditionally strong fields in the university. ITbM is one of the research centers of the Japanese MEXT (Ministry of Education, Culture, Sports, Science and Technology) program, the World Premier International Research Center Initiative (WPI). The aim of ITbM is to develop transformative bio-molecules, innovative functional molecules capable of bringing about fundamental change to biological science and technology. Research at ITbM is carried out in a "Mix-Lab" style, where international young researchers from various fields work together side-by-side in the same lab, enabling interdisciplinary interaction. Through these endeavors, ITbM will create "transformative bio-molecules" that will dramatically change the way of research in chemistry, biology and other related fields to solve urgent problems, such as environmental issues, food production and medical technology that have a significant impact on the society. About JST-ERATO ERATO (The Exploratory Research for Advanced Technology), one of the Strategic Basic Research Program, aims to form a headstream of science and technology, and ultimately contribute to science, technology, and innovation that will change society and the economy in the future. In ERATO, a Research Director, a principal investigator of ERATO research project, establishes a new research base in Japan and recruits young researchers to implement his or her challenging research project within a limited time frame. For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


News Article | April 26, 2016
Site: www.nanotech-now.com

Abstract: A thermoelectric (TE) device*1 using cutting edge thermoelectric conversion technology has been created by a team comprising NEC Corporation, NEC TOKIN Corporation and Tohoku University. The new technology, known as the spin Seebeck effect *2, has conversion efficiency 10 times higher than the conventional method *3. Thermoelectric conversion technology that converts energy abandoned as waste heat back to electric power could potentially save energy and reduce greenhouse gas emissions. Although conventional spin Seebeck thermoelectric devices have the advantage of low manufacturing costs and high versatility and durability, their energy conversion efficiency is inferior. "We have improved the conversion efficiency of this spin Seebeck thermoelectric device by more than 10 times because of its newly developed material and device structure," says Soichi Tsumura, General Manager, IoT Device Research Laboratories, NEC Corporation. "Furthermore, devices made of flexible material, such as resin, have been achieved using a manufacturing process that does not require high-temperature heat treatment." "The conversion efficiency of this new spin thermoelectric device has been improved by almost one million times when compared to the earliest device, and has taken an important step towards practical use as a generator element. The achievement of practical use as a heat flux sensor is also in sight," says Tsumura. The three parties aim to further the research and development of technologies to generate electricity from the large amount of waste heat emitted by things such as plants, data centers and vehicles. These results were achieved as part of the "Saitoh Spin Quantum Rectification Project" led by Tohoku University Professor Eiji Saitoh. It is funded by the Exploratory Research for Advanced Technology (ERATO) program of the Japan Science and Technology Agency (JST). ### Footnotes: *1 The Spin Seebeck effect is a thermoelectric effect discovered in 2008 by Prof. Eiji Saitoh and Associate Prof. Ken-ichi Uchida of Tohoku University (Keio University at that time). This is a phenomenon in which a temperature gradient applied in a magnetic material produces a spin current along the temperature gradient. The spin current is a flow of a magnetic property of an electron, so-called "spin". *2 A thermoelectric device is a device which converts thermal energy directly into electricity and vice versa. *3 Compared with a test module that was produced based on a multi-layered SSE technology published by the Tohoku University group in 2015. *4 The anomalous Nernst effect is a thermoelectric effect discovered about 100 years ago, which relates to the magnetic property of a conductive material. *5 References are as follows, A. Kirihara et. al., Nature Materials 11, (2012) 686. M. Ishida, NEC Technical Journal 66(1), (2013). R. Ramos et. al., Phys. Rev. B 92, (2015) 220407(R) Publication Details: Authors: Title: "Flexible heat-flow sensing sheets based on the longitudinal spin Seebeck effect using one dimensional spin-current conducting films" Journal: Scientific Reports 6, 23114, DOI: 10.1038/srep23114 For more information, please click If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


« Continental showcases car tires and engine mounts with rubber made from dandelion roots; targeting series production in 5-10 years | Main | Hyundai Motor and Cisco collaborate for global connected car project » NEC Corporation, NEC TOKIN Corporation and TOHOKU UNIVERSITY have jointly created a thermoelectric (TE) device using the spin Seebeck effect (SSE) with conversion efficiency 10 times higher than a test module that was produced based on a multi-layered SSE technology published by the Tohoku University group in 2015. The spin-Seebeck effect is a thermoelectric effect discovered in 2008 by Prof. Eiji Saitoh and Associate Prof. Ken-ichi Uchida of Tohoku University (Keio University at that time). This is a phenomenon in which a temperature gradient applied in a magnetic material produces a spin current along the temperature gradient. The spin current is a flow of a magnetic property of an electron. Thermoelectric conversion technology that converts energy abandoned as waste heat back to electric power is strongly anticipated to be used for saving energy and reducing greenhouse gas emissions. Although conventional spin-Seebeck thermoelectric devices have the advantages of a low manufacturing cost and high versatility and durability, their energy conversion efficiency is inferior. We have improved the conversion efficiency of this spin-Seebeck thermoelectric device by more than 10 times because of its newly developed material and device structure. Furthermore, devices made of flexible material, such as resin, have been achieved using a manufacturing process that does not require high-temperature heat treatment. The conversion efficiency of this new spin thermoelectric device has been improved by almost one million times when compared to the earliest device, and has taken an important step towards practical use as a generator element. The achievement of practical use as a heat flux sensor is also in sight. In the future, the three parties participating in this development aim to further the research and development of technologies to generate electricity from the large amount of waste heat emitted by plants, data centers, vehicles and others. Key features of this new technology are: Development of a low-cost, high-performance ferromagnetic alloy and significant improvement in thermoelectric conversion efficiency. Conventionally, expensive platinum was used as the electrode material to extract electric power in a spin-Seebeck thermoelectric device. This time, new cobalt alloys were developed to replace the platinum. As a result, the cost was significantly reduced. Furthermore, the combination of the thermoelectric effect termed the Anomalous Nernst Effect(ANE), appearing due to the ferromagnetic properties added to the cobalt alloys and the spin Seebeck effect, have improved the thermoelectric conversion efficiency by more than 10 times. The Anomalous Nernst Effect is a thermoelectric effect discovered about 100 years ago, which relates to the magnetic property of a conductive material. Devices with bending resistance and low heat treatment temperature achieved by new deposition technology. New deposition technology fabricates a fine ferrite film for spin-Seebeck thermoelectric devices at 90 ˚C, much lower than the 700 ˚C used with the conventional method. Owing to the decrease in heat treatment temperature, elements can be created on the surface of plastic film, etc., and flexible devices of various shapes are created. This achievement was published in an open access paper in Scientific Reports. These results were achieved as part of the Exploratory Research for Advanced Technology (ERATO) “SAITOH Spin Quantum Rectification Project” (Research Director: Eiji Saitoh, Professor of Tohoku University; Research Period: 2014 - 2020 fiscal year) of the Japan Science and Technology Agency (JST).


News Article | January 26, 2016
Site: www.nanotech-now.com

Abstract: Healthcare practitioners may one day be able to physically screen for breast cancer using pressure-sensitive rubber gloves to detect tumors, owing to a transparent, bendable and sensitive pressure sensor newly developed by Japanese and American teams. Conventional pressure sensors are flexible enough to fit to soft surfaces such as human skin, but they cannot measure pressure changes accurately once they are twisted or wrinkled, making them unsuitable for use on complex and moving surfaces. Additionally, it is difficult to reduce them below 100 micrometers thickness because of limitations in current production methods. To address these issues, an international team of researchers led by Dr. Sungwon Lee and Professor Takao Someya of the University of Tokyo's Graduate School of Engineering has developed a nanofiber-type pressure sensor that can measure pressure distribution of rounded surfaces such as an inflated balloon and maintain its sensing accuracy even when bent over a radius of 80 micrometers, equivalent to just twice the width of a human hair. The sensor is roughly 8 micrometers thick and can measure the pressure in 144 locations at once. The device demonstrated in this study consists of organic transistors, electronic switches made from carbon and oxygen based organic materials, and a pressure sensitive nanofiber structure. Carbon nanotubes and graphene were added to an elastic polymer to create nanofibers with a diameter of 300 to 700 nanometers, which were then entangled with each other to form a transparent, thin and light porous structure. "We've also tested the performance of our pressure sensor with an artificial blood vessel and found that it could detect small pressure changes and speed of pressure propagation," says Lee. He continues, "Flexible electronics have great potential for implantable and wearable devices. I realized that many groups are developing flexible sensors that can measure pressure but none of them are suitable for measuring real objects since they are sensitive to distortion. That was my main motivation and I think we have proposed an effective solution to this problem." ### This work was conducted in collaboration with the research group of Professor Zhigang Suo at Harvard University, USA. Collaborating institutions Osaka University Harvard University, USA Funding Japan Science and Technology Agency (JST) Exploratory Research for Advanced Technology (ERATO) Someya Bio-Harmonized Electronics Project About University of Tokyo The University of Tokyo is Japan's leading university and one of the world's top research universities. The vast research output of some 6,000 researchers is published in the world's top journals across the arts and sciences. Our vibrant student body of around 15,000 undergraduate and 15,000 graduate students includes over 2,000 international students. Find out more at www.u-tokyo.ac.jp/en/ or follow us on Twitter at @UTokyo_News_en. For more information, please click Contacts: Research contact Professor Takao Someya Department of Electrical Engineering and Information Systems Graduate School of Engineering The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan Tel: +81-3-5841-0411/6756 Fax: +81-3-5841-6709 Press officer contact Graduate School of Engineering Public Relations Office The University of Tokyo The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-8656, Japan Tel: 03-5841-1790 Fax: 03-5841-0529 If you have a comment, please us. Issuers of news releases, not 7th Wave, Inc. or Nanotechnology Now, are solely responsible for the accuracy of the content.


Li C.,University of Wisconsin - Madison | Hatta M.,University of Wisconsin - Madison | Nidom C.A.,Airlangga University | Muramoto Y.,University of Tokyo | And 6 more authors.
Proceedings of the National Academy of Sciences of the United States of America | Year: 2010

The spread of avian H5N1 influenza viruses around the globe has become a worldwide public health concern. To evaluate the pathogenic potential of reassortant viruses between currently cocirculating avian H5N1 and human H3N2 influenza viruses, we generated all the 254 combinations of reassortant viruses between A/chicken/South Kalimantan/UT6028/06 (SK06, H5N1) and A/Tokyo/Ut-Sk-1/07 (Tok07, H3N2) influenza viruses by reverse genetics. We found that the presence of Tok07 PB2 protein in the ribonucleoprotein (RNP) complex allowed efficient viral RNA transcription in a minigenome assay and that RNP activity played an essential role in the viabilityandreplicative ability of the reassortant viruses. When the pathogenicity of 75 reassortant H5 viruses was tested in mice, 22 were more pathogenic than the parental SK06 virus, and three were extremely virulent. Strikingly, all 22 of these viruses obtained their PB2 segment from Tok07 virus. Further analysis showed that Tok07 PB1 alone lacked the ability to enhance the pathogenicity of the reassortant viruses but could do so by cooperating with Tok07 PB2. Our data demonstrate that reassortment between an avian H5N1 virus with low pathogenicity in mice and a human virus could result in highly pathogenic viruses and that the human virus PB2 segment functions in the background of an avian H5N1 virus, enhancing its virulence. Our findings highlight the importance of surveillance programs to monitor the emergence of human H5 reassortant viruses, especially those containing a PB2 segment of human origin.


Bornholdt Z.A.,Scripps Research Institute | Noda T.,Tokyo Medical University | Abelson D.M.,Scripps Research Institute | Halfmann P.,University of Wisconsin - Madison | And 6 more authors.
Cell | Year: 2013

Proteins, particularly viral proteins, can be multifunctional, but the mechanisms behind multifunctionality are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry, and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer traffics to the cellular membrane. Once there, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multilayered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle and demonstrate how a single wild-type, unmodified polypeptide can assemble into different structures for different functions. PaperFlick © 2013 Elsevier Inc.

Loading Exploratory Research for Advanced Technology collaborators
Loading Exploratory Research for Advanced Technology collaborators