Entity

Time filter

Source Type


Fernandez M.D.,Experimental Station of Cajamar Palmerillas Cajamar Foundation | Lopez J.C.,Experimental Station of Cajamar Palmerillas Cajamar Foundation | Cespedes A.,Experimental Station of Cajamar Palmerillas Cajamar Foundation | Meca D.E.,Experimental Station of Cajamar Palmerillas Cajamar Foundation | Bailey B.,Formerly at Experimental Station of Cajamar Las Palmerillas Cajamar Foundation
International Journal of Biometeorology | Year: 2015

A typical meteorological year (TMY) represents the typical meteorological conditions over many years but still contains the short term fluctuations which are absent from long-term averaged data. Meteorological data were measured at the Experimental Station of Cajamar ‘Las Palmerillas’ (Cajamar Foundation) in Almeria, Spain, over 19 years at the meteorological station and in a reference greenhouse which is typical of those used in the region. The two sets of measurements were subjected to quality control analysis and then used to create TMY datasets using three different methodologies proposed in the literature. Three TMY datasets were generated for the external conditions and two for the greenhouse. They were assessed by using each as input to seven horticultural models and comparing the model results with those obtained by experiment in practical trials. In addition, the models were used with the meteorological data recorded during the trials. A scoring system was used to identify the best performing TMY in each application and then rank them in overall performance. The best methodology was that of Argiriou for both greenhouse and external conditions. The average relative errors between the seasonal values estimated using the 19-year dataset and those using the Argiriou greenhouse TMY were 2.2 % (reference evapotranspiration), −0.45 % (pepper crop transpiration), 3.4 % (pepper crop nitrogen uptake) and 0.8 % (green bean yield). The values obtained using the Argiriou external TMY were 1.8 % (greenhouse reference evapotranspiration), 0.6 % (external reference evapotranspiration), 4.7 % (greenhouse heat requirement) and 0.9 % (loquat harvest date). Using the models with the 19 individual years in the historical dataset showed that the year to year weather variability gave results which differed from the average values by ± 15 %. By comparison with results from other greenhouses it was shown that the greenhouse TMY is applicable to greenhouses which have a solar radiation transmission of approximately 65 % and rely on manual control of ventilation which constitute the majority in the south-east of Spain and in most Mediterranean greenhouse areas. © 2014, ISB. Source

Discover hidden collaborations