Entity

Time filter

Source Type

Leuven, Belgium

Van Leuven F.,Experimental Genetics Group | Jaworski T.,Experimental Genetics Group | Kugler S.,University Medicine
International Journal of Alzheimer's Disease | Year: 2010

Patients suffering from Alzheimer's disease (AD) are typified and diagnosed postmortem by the combined accumulations of extracellular amyloid plaques and of intracellular tauopathy, consisting of neuropil treads and neurofibrillary tangles in the somata. Both hallmarks are inseparable and remain diagnostic as described by Alois Alzheimer more than a century ago. Nevertheless, these pathological features are largely abandoned as being the actual pathogenic or neurotoxic factors. The previous, almost exclusive experimental attention on amyloid has shifted over the last 10 years in two directions. Firstly, from the concrete deposits of amyloid plaques to less well-defined soluble or pseudosoluble oligomers of the amyloid peptides, ranging from dimers to dodecamers and even larger aggregates. A second shift in research focus is from amyloid to tauopathy, and to their mutual relation. The role of Tau in the pathogenesis and disease progression is appreciated as leading to synaptic and neuronal loss, causing cognitive deficits and dementia. Both trends are incorporated in a modified amyloid cascade hypothesis, briefly discussed in this paper that is mainly concerned with the second aspect, that is, protein Tau and its associated fundamental questions. © 2010 Tomasz Jaworski et al. Source


Jung C.K.E.,Ludwig Maximilians University of Munich | Fuhrmann M.,German Center for Neurodegenerative Diseases | Honarnejad K.,Ludwig Maximilians University of Munich | Van Leuven F.,Experimental Genetics Group | Herms J.,Ludwig Maximilians University of Munich
Journal of Neurochemistry | Year: 2011

Mutations in presenilins are the major cause of familial Alzheimer's disease (FAD), leading to impairments of memory and synaptic plasticity followed by age-dependent neurodegeneration. Presenilins are the catalytic subunits of γ-secretase, which itself is critically involved in the processing of amyloid precursor protein to release neurotoxic amyloid β (Aβ). Besides Aβ generation, there is growing evidence that presenilins play an essential role in the formation and maintenance of synapses. To further elucidate the effect of presenilin1 (PS1) on synapses, we performed longitudinal in vivo two-photon imaging of dendritic spines in the somatosensory cortex of transgenic mice over-expressing either human wild-type PS1 or the FAD-mutated variant A246E (FAD-PS1). Interestingly, the consequences of transgene expression were different in two subtypes of cortical dendrites. On apical layer 5 dendrites, we found an enhanced spine density in both mice over-expressing human wild-type presenilin1 and FAD-PS1, whereas on basal layer 3 dendrites only over-expression of FAD-PS1 increased the spine density. Time-lapse imaging revealed no differences in kinetically distinct classes of dendritic spines nor was the shape of spines affected. Although γ-secretase-dependent processing of synapse-relevant proteins seemed to be unaltered, higher expression levels of ryanodine receptors suggest a modified Ca2+ homeostasis in PS1 over-expressing mice. However, the conditional depletion of PS1 in single cortical neurons had no observable impact on dendritic spines. In consequence, our results favor the view that PS1 influences dendritic spine plasticity in a gain-of-function but γ-secretase-independent manner. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry. Source


Tanghe A.,ReMYND NV | Termont A.,ReMYND NV | Merchiers P.,Ablynx | Schilling S.,Probiodrug | And 5 more authors.
International Journal of Alzheimer's Disease | Year: 2010

The APP[V717I] London (APP-Ld) mouse model recapitulates important pathological and clinical hallmarks of Alzheimer's disease (AD) and is therefore a valuable paradigm for evaluating therapeutic candidates. Historically, both the parenchymal and vascular amyloid deposits, and more recently, truncated and pyroglutamate-modified Abet a 3 (pE) - 42 species, are perceived as important hallmarks of AD-pathology. Late stage symptoms are preceded by robust deficits in orientation and memory that correlate in time with Abeta oligomerization and GSK3 -mediated phosphorylation of endogenous murine Tau, all markers that have gained considerable interest during the last decade. Clinical parallels with AD patients and the value of the APP-Ld transgenic mouse model for preclinical in vivo testing of candidate drugs are discussed. © 2010 An Tanghe et al. Source


Jaworski T.,Experimental Genetics Group | Dewachter I.,Experimental Genetics Group | Seymour C.M.,Experimental Genetics Group | Borghgraef P.,Experimental Genetics Group | And 3 more authors.
Biochimica et Biophysica Acta - Molecular Basis of Disease | Year: 2010

Alzheimer's dementia is developing ever more as a complex syndrome with various unknown genetic and epigenetic contributions. These are compounded on and exacerbating the underlying amyloid and tau pathology that remain the basis of the pathological definition of Alzheimer's disease. Here, we present a selection of aspects of recent bigenic and virus-based mouse strains, developed as pre-clinical models for Alzheimer's disease. We discuss newer features in the context of the characteristics defined in previously validated transgenic models. We focus on specific aspects of single and multiple transgenic mouse models for Alzheimer's disease and for tauopathies, rather than providing an exhaustive list of all available models. We concentrate on the content of information related to neurodegeneration and disease mechanisms. We pay attention to aspects and defects that are predicted by the models and can be tested in humans. We discuss implications that help translate the fundamental knowledge into clinical, diagnostic and therapeutic applications. We elaborate on the increasing knowledge extracted from transgenic models and from newer adeno-associated viral models. We advocate this combination as a valuable strategy to study molecular, cellular and system-related pathogenic mechanisms in AD and tauopathies. We believe that innovative animal models remain needed to critically test current views, to identify and validate therapeutic targets, to allow testing of compounds, to help understand and eventually treat tauopathies, including Alzheimer's disease. © 2010 Elsevier B.V. Source

Discover hidden collaborations