Entity

Time filter

Source Type

Singapore, Singapore

Mattar C.N.,Experimental Fetal Medicine Group
Methods in molecular biology (Clifton, N.J.) | Year: 2012

Intrauterine gene therapy (IUGT) potentially enables the treatment and possible cure of monogenic -diseases that cause severe fetal damage. The main benefits of this approach will be the ability to correct the disorder before the onset of irreversible pathology and inducing central immune tolerance to the vector and transgene if treatment is instituted in early gestation. Cure has been demonstrated in small animal models, but because of the significant differences in immune ontogeny and the much shorter gestation compared to humans, it is unlikely that questions of long-term efficacy and safety will be adequately addressed in rodents. The nonhuman primate (NHP) allows investigation of key issues, in particular, the different outcomes in early and late-gestation IUGT associated with different stages of immune maturity, longevity of transgene expression, and delayed-onset adverse events in treated offspring and mothers including insertional mutagenesis. Here, we describe a model based on the Macaca fascicularis using ultrasound and fetoscopic approaches to systemic vector delivery and the processes involved in vector administration and longitudinal analyses.


Jiang X.,Nanyang Technological University | Nai M.H.,National University of Singapore | Lim C.T.,National University of Singapore | Visage C.L.,University of Nantes | And 3 more authors.
Journal of Biomedical Materials Research - Part A | Year: 2015

Cells perceive their microenvironment through physical and mechanical cues, such as extracellular matrix topography or stiffness. In this study, we developed a poly-saccharide scaffold that can provide combined substrate topography and matrix compliance signals to direct cell fate. Pullulan/dextran (P/D) nanofibers were fabricated with variable stiffness by in situ crosslinking during electrospinning. By varying the chemical crosslinking content between 10, 12, 14, and 16%, (denoted as STMP10, STMP12, STMP14, and STMP16 respectively), scaffold mechanical stiffness was altered. We characterized substrate stiffness by various methods. Under hydrated conditions, atomic force microscopy and tensile tests of bulk scaffolds were conducted. Under dry conditions, tensile tests of scaffolds and single nanofibers were examined. In addition, we evaluated the efficacy of the scaffolds in directing stem cell differentiation. Using human first trimester mesenchymal stem cells (fMSCs) cultured on STMP14 P/D scaffolds (Young's modulus: 7.84 kPa) in serum-free neuronal differentiation medium exhibited greatest extent of differentiation. Cells showed morphological changes and significantly higher expression of motor neuron markers. Further analyses by western blotting also revealed the enhanced expression of choline ace-tyltransferase on STMP14 (7.84 kPa) and STMP16 (11.08 kPa) samples as compared to STMP12 (7.19 kPa). Taken together, this study demonstrates that the stiffness of P/D nanofibers can be altered by differential in situ crosslinking during elec-trospinning and suggests the feasibility of using such poly-saccharide nanofibers in supporting fMSC neuronal commitment. © 2014 Wiley Periodicals, Inc.


Mattar C.N.,Experimental Fetal Medicine Group | Waddington S.N.,University College London | Biswas A.,Experimental Fetal Medicine Group | Johana N.,Experimental Fetal Medicine Group | And 12 more authors.
Gene Therapy | Year: 2013

Correction of perinatally lethal neurogenetic diseases requires efficient transduction of several cell types within the relatively inaccessible CNS. Intravenous AAV9 delivery in mouse has achieved development stage-specific transduction of neuronal cell types, with superior neuron-targeting efficiency demonstrated in prenatal compared with postnatal recipients. Because of the clinical relevance of the non-human primate (NHP) model, we investigated the ability of AAV9 to transduce the NHP CNS following intrauterine gene therapy (IUGT). We injected two macaque fetuses at 0.9 G with 1 × 10 13 vg scAAV9-CMV-eGFP through the intrahepatic continuation of the umbilical vein. Robust green fluorescent protein (GFP) expression was observed for up to 14 weeks in the majority of neurons (including nestin-positive cells), motor neurons and oligodendrocytes throughout the CNS, with a significantly lower rate of transduction in astrocytes. Photoreceptors and neuronal cell bodies in the plexiform and ganglionic retinal layers were also transduced. In the peripheral nervous system (PNS), widespread transduction of neurons was observed. Tissues harvested at 14 weeks showed substantially lower vector copy number and GFP levels, although the percentage of GFP-expressing cells remained stable. Thus, AAV9-IUGT in late gestation efficiently transduces both the CNS and PNS with neuronal predilection, of translational relevance to hereditary disorders characterized by perinatal onset of neuropathology. © 2013 Macmillan Publishers Limited All rights reserved.


Mattar C.N.,Experimental Fetal Medicine Group | Biswas A.,Experimental Fetal Medicine Group | Choolani M.,Experimental Fetal Medicine Group | Chan J.K.Y.,Experimental Fetal Medicine Group | Chan J.K.Y.,National University of Singapore
Methods in Molecular Biology | Year: 2012

Intrauterine gene therapy (IUGT) potentially enables the treatment and possible cure of monogenic A diseases that cause severe fetal damage. The main benefits of this approach will be the ability to correct the disorder before the onset of irreversible pathology and inducing central immune tolerance to the vector and transgene if treatment is instituted in early gestation. Cure has been demonstrated in small animal models, but because of the significant differences in immune ontogeny and the much shorter gestation compared to humans, it is unlikely that questions of long-term efficacy and safety will be adequately addressed in rodents. The nonhuman primate (NHP) allows investigation of key issues, in particular, the different outcomes in early and late-gestation IUGT associated with different stages of immune maturity, longevity of transgene expression, and delayed-onset adverse events in treated offspring and mothers including insertional mutagenesis. Here, we describe a model based on the Macaca fascicularis using ultrasound and fetoscopic approaches to systemic vector delivery and the processes involved in vector administration and longitudinal analyses. © 2012 Springer Science+Business Media, LLC.


Lee E.S.M.,National University of Singapore | Lee E.S.M.,University of Queensland | Shuter B.,National University of Singapore | Chan J.,Experimental Fetal Medicine Group | And 8 more authors.
Biomaterials | Year: 2010

In vivo tracking of stem cells after transplantation is crucial for understanding cell-fate and therapeutic efficacy. By labelling stem cells with magnetic particles, they can be tracked by Magnetic Resonance Imaging (MRI). We previously demonstrated that microgel iron oxide nanoparticle (MGIO) provide superior tracking sensitivity over commercially available particles. Here, we describe the synthesis of MGIO and report on their morphology, hydrodynamic diameters (87-766 nm), iron oxide weight content (up to 82%) and magnetization characteristics (Ms = 52.9 Am2/kg, MR = 0.061 Am2/kg and Hc = 0.672 A/m). Their MR relaxation characteristics are comparable to those of theoretical models and represent the first such correlation between model and real particles of varying diameters. A labelling study of primary endothelial progenitor cells also confirms that MGIO is an efficient label regardless of cell type. The facile synthesis of MGIO makes it a useful tool for the studying of relaxation induced by magnetic particles and cellular tracking by MRI. © 2010 Elsevier Ltd. All rights reserved.

Discover hidden collaborations