Entity

Time filter

Source Type

Monmouth Junction, NJ, United States

Trademark
Exosome science Inc. | Date: 2015-01-27

Medical devices for extracorporeal therapeutics and diagnostics.


Taylor D.D.,Exosome science Inc | Gercel-Taylor C.,Exosome science Inc
Philosophical Transactions of the Royal Society B: Biological Sciences | Year: 2014

We have previously demonstrated the release of membranous structures by cells into their extracellular environment, which are termed exosomes, microvesicles or extracellular vesicles depending on specific characteristics, including size, composition and biogenesis pathway. With activation, injury, stress, transformation or infection, cells express proteins and RNAs associated with the cellular responses to these events. The exosomes released by these cells can exhibit an array of proteins, lipids and nucleic acids linked to these physiologic events. This review focuses on exosomes associated with traumatic brain injury, which may be both diagnostic and a causative factor in the progression of the injury. Based on current data, exosomes play essential roles as conveyers of intercellular communication and mediators of many of the pathological conditions associated with development, progression and therapeutic failures and cellular stress in a variety of pathologic conditions. These extracellular vesicles express components responsible for angiogenesis promotion, stromal remodelling, signal pathway activation through growth factor/receptor transfer, chemoresistance, immunologic activation and genetic exchange. These circulating exosomes not only represent a central mediator of the pro-inflammatory microenvironment linked with secondary brain injury, but their presence in the peripheral circulation may serve as a surrogate for biopsies, enabling real-time diagnosis and monitoring of neurodegenerative progression. © 2014 The Author(s) Published by the Royal Society. All rights reserved. Source


Taylor D.D.,Exosome science Inc | Shah S.,Exosome science Inc
Methods | Year: 2015

Viable tumor cells actively release vesicles into the peripheral circulation and other biologic fluids, which exhibit proteins and RNAs characteristic of that cell. Our group demonstrated the presence of these extracellular vesicles of tumor origin within the peripheral circulation of cancer patients and proposed their utility for diagnosing the presence of tumors and monitoring their response to therapy in the 1970s. However, it has only been in the past 10. years that these vesicles have garnered interest based on the recognition that they serve as essential vehicles for intercellular communication, are key determinants of the immunosuppressive microenvironment observed in cancer and provide stability to tumor-derived components that can serve as diagnostic biomarkers. To date, the clinical utility of extracellular vesicles has been hampered by issues with nomenclature and methods of isolation. The term "exosomes" was introduced in 1981 to denote any nanometer-sized vesicles released outside the cell and to differentiate them from intracellular vesicles. Based on this original definition, we use "exosomes" as synonymous with "extracellular vesicles." While our original studies used ultracentrifugation to isolate these vesicles, we immediately became aware of the significant impact of the isolation method on the number, type, content and integrity of the vesicles isolated. In this review, we discuss and compare the most commonly utilized methods for purifying exosomes for post-isolation analyses. The exosomes derived from these approaches have been assessed for quantity and quality of specific RNA populations and specific marker proteins. These results suggest that, while each method purifies exosomal material, there are pros and cons of each and there are critical issues linked with centrifugation-based methods, including co-isolation of non-exosomal materials, damage to the vesicle's membrane structure and non-standardized parameters leading to qualitative and quantitative variability. The down-stream analyses of these resulting varying exosomes can yield misleading results and conclusions. © 2015 Elsevier Inc. Source

Discover hidden collaborations