Québec, Canada
Québec, Canada

Time filter

Source Type

Patent
Exfo Inc. | Date: 2017-02-08

An OTDR device and method for characterizing one or more events in an optical fiber link are provided. A plurality of light acquisitions is performed. For each light acquisition, test light pulses are propagated in the optical fiber link and the corresponding return light signals from the optical fiber link are detected. The light acquisitions are performed under different acquisition conditions, for example using different pulsewidths or wavelengths. Parameters characterizing the event are derived using the detected return signal from at least two of the plurality of light acquisitions.


There is provided an adapter tip to be employed with an optical-fiber inspection microscope probe and an optical-fiber inspection microscope system suitable for imaging the optical-fiber endface of an angled-polished optical-fiber connector deeply recessed within a connector adapter. The adapter tip or microscope system comprises a relay lens system having at least a first relay lens which is disposed so as to directly receive light reflected from the optical-fiber endface during inspection, the lens axis of the first relay lens being offset relative to the optical-fiber endface so as to deviate light reflected from the optical-fiber endface towards the optical-fiber axis of the connector.


There is provided a method for measuring an optical power attenuation value of a multimode DUT. The method generally has, using an optical source, propagating test light along a multimode device link having a first multimode device, the multimode DUT and a second multimode device serially connected to one another; said propagating including inducing a preferential attenuation of high-order optical fiber modes of the test light along the first multimode device and along the second multimode device; using an optical power detector, detecting an optical signal resulting from the propagation of the test light along the multimode device link and transmitting an output signal based on the detected optical signal; and using a processor, determining the optical power attenuation value of the multimode DUT based on the output signal.


Patent
Exfo Inc. | Date: 2016-06-27

An inspection system for inspecting a multiple-fiber connector is provided. The inspection system includes a microscope probe and a probe tip configured to provide an optical path between the microscope probe and the multiple-fiber connector. The probe tip and microscope probe are configured so that the field of view of the microscope probe is sufficiently large to cover a portion of the connector surface encompassing a plurality of the optical fiber endfaces. The system further includes a shifting mechanism operable to shift the field of view of the microscope probe between at least two discrete positions over the connector surface. Each discrete position encompasses a different subset of the multiple optical fiber endfaces and optionally at least one positioning reference. A probe tip and a method of inspection are also provided.


The fiber inspection microscope and power measurement system for inspecting an endface of an optical fiber at an angle-polished connector generally has: a mating interface (74) for receiving the angle-polished connector (30), the endface causing a mean propagation direction of light exiting the optical fiber at endface to be tilted relative to an imaging path of the system; a converging element (50) to be optically coupled to the endface and being configured to receive the tilted light and to redirect the tilted light toward the imaging path of the fiber inspection microscope system; and a power detection assembly (60) optically coupled to the converging element (50), the power detection assembly being configured to detect an optical power associated with the tilted light redirected by the converging element.


There is provided a method to discriminate NLE-induced signal deformation from ASE-noise on polarization multiplexed signals, in order to measure the OSNR under NLE conditions and/or characterize the NLE-induced signal deformation. In accordance with one aspect, the method is based on the acquisition of optical spectrum traces when the (data-carrying) optical communication signal is partially or completely extinguished (ASE-noise only), as well as with a live optical communication signal. Comparing traces acquired with different conditions and/or at different dates allows discrimination of the signal contribution, the ASE-noise contribution and the NLE-induced deformations on the SUT.


There is provided a method which allows for measuring, using an optical power loss measurement system (e.g., two optical loss test set units and associated patch cords), the insertion loss value of a DUT with a degree of accuracy similar to what can be provided using the one-test cord procedure while maintaining the convenience associated with the two-cord and the three-cord reference procedures, notably allowing other types of measurement to be performed on the DUT.


There is provided an adapter tip to be employed with an optical-fiber inspection microscope probe and an optical-fiber inspection microscope system suitable for imaging the optical-fiber endface of an angled-polished optical-fiber connector deeply recessed within a connector adapter. The adapter tip or microscope system comprises a relay lens system having at least a first relay lens which is disposed so as to directly receive light reflected from the optical-fiber endface during inspection, the lens axis of the first relay lens being offset relative to the optical-fiber endface so as to deviate light reflected from the optical-fiber endface towards the optical-fiber axis of the connector.


Patent
Exfo Inc. | Date: 2016-02-22

A safe-mode OTDR method for characterizing an optical fiber link is provided, as well as an OTDR apparatus operating under such a safe mode. The method includes performing OTDR acquisitions along the fiber link using an OTDR apparatus connected at a proximal end of the optical fiber link, and operating under OTDR acquisition conditions that have been deemed safe for a communication device at a distal end of the fiber link. The obtained reflectometric trace, representing a proximal portion of the optical fiber link, is used to determine a partial-link loss value associated with the proximal portion of the fiber link. Modified acquisition conditions that are safe for the communication device are determined based on the partial-link loss value and on loss-related maximum rating parameters for the communication device. The process is repeated using the modified OTDR acquisition conditions until the end of the link has been reached.


A portable apparatus for measuring optical powers of optical signals propagating concurrently in opposite directions in an optical transmission path between two elements, at least one of the elements being operative to transmit a first optical signal (S1) only if it continues to receive a second optical signal (S2) from the other of said elements, comprises first and second connector means for connecting the apparatus into the optical transmission path in series therewith, and propagating and measuring means connected between the first and second connector means for propagating at least the second optical signal (S2) towards the one of the elements, and measuring the optical powers of the concurrently propagating optical signals (S1, S2). The measurement results may be displayed by a suitable display unit. Where one element transmits signals at two different wavelengths, the apparatus may separate parts of the corresponding optical signal portion according to wavelength and process them separately.

Loading EXFO Inc. collaborators
Loading EXFO Inc. collaborators