Excem

Maule, France
Maule, France

Time filter

Source Type

The invention relates to an interfacing device for transmission through interconnections used for sending a plurality of electrical signals. The interfacing device of the invention comprises signal terminals and a common terminal. A transmitting circuit receives the input signals of the transmitting circuit coming from a source and delivers, when the transmitting circuit is in the activated state, currents to the signal terminals, each of the currents being mainly determined by one or more of the input signals of the transmitting circuit, one or more of the currents being not mainly determined by only one of the input signals of the transmitting circuit. The balancing circuit is such that, when the transmitting circuit is in the activated state, the current flowing out of the common terminal approximates the opposite of the sum of the currents flowing out of the signal terminals.


The invention relates to a method and a device for pseudo-differential transmission in interconnections used for sending a plurality of electrical signals. The ends of an interconnection having 4 transmission conductors and a return conductor distinct from the reference conductor are each connected to a termination circuit. Three damping circuits are connected between the return conductor and the reference conductor. The transmitting circuits receive at their inputs the signals from the 4 channels of the two sources, and are connected to the conductors of the interconnection. A transmitting circuit in the activated state produces modal electrical variables, each modal electrical variable being allocated to one and only one channel. The receiving circuits are connected to the conductors of the interconnection, each receiving circuit being such that the 4 channels of a source connected to a transmitting circuit in the activated state are sent to the four channels of the destinations, without noticeable echo, internal crosstalk and external crosstalk.


The invention relates to a method and a device for transmission through interconnections used for sending a plurality of electrical signals. An interconnection having 4 transmission conductors and a reference conductor cannot be modeled as a uniform multiconductor transmission line. Each end of the interconnection is connected to a termination circuit. The transmitting circuits receive at their inputs the signals from the 4 channels of the two sources, and are connected to the interconnection. A transmitting circuit in the activated state produces modal electrical variables, each modal electrical variable being allocated to one and only one channel. The receiving circuits are connected to the interconnection, each receiving circuit being such that the signals of the 4 channels of a source connected to a transmitting circuit in the activated state are sent to the four channels of the destinations, without noticeable echo and internal crosstalk.


The invention relates to an interfacing device for transmission through interconnections used for sending a plurality of electrical signals. The interfacing device of the invention comprises signal terminals and a common terminal. A transmitting circuit receives the input signals of the transmitting circuit coming from a source. The output of the transmitting circuit delivers, when the transmitting circuit is in the activated state, voltages between one of the signal terminals and the reference terminal (ground). A receiving circuit delivers, when the receiving circuit is in the activated state, output signals of the receiving circuit determined each by the voltage between one of the signal terminals and the common terminal, to the destination. In the closed state, the common terminal switching circuit is, for the common terminal, equivalent to a voltage source delivering a constant voltage, connected in series with a passive two-terminal circuit element presenting a low impedance.


The invention relates to an interfacing device for transmission through interconnections used for sending a plurality of electrical signals. The interfacing device of the invention comprises signal terminals and a common terminal. A receiving circuit delivers, when the receiving circuit is in the activated state, output signals of the receiving circuit determined each by a linear combination of the voltages between one of the signal terminals and the common terminal, to the destination. A termination circuit is such that, when it is in the activated state, it is approximately equivalent, for the signal terminals and the common terminal, to a (m+1)-terminal network such that, for small signals, the impedance matrix, with respect to the common terminal, of the (m+1)-terminal network is equal to a wanted non-diagonal matrix of size mm.


Patent
Excem | Date: 2010-12-06

The invention relates to a receiving circuit for transmission through interconnections used for sending a plurality of electrical signals. Each of the output signals of the receiving circuit produced by the receiving circuit of the invention is delivered by an output of a combining circuit having 4 inputs and 4 outputs. Each signal terminal of the receiving circuit is connected to a first input terminal of a differential circuit, the differential circuit also having a second input terminal and a single output terminal. The common terminal of the receiving circuit is connected to the second input terminal of each of the differential circuits. Each input of the combining circuit is coupled to the output terminal of one of the differential circuits. Each of the output signals of the receiving circuit is a linear combination of the voltages between one of the signal terminals and the common terminal.


The invention relates to an amplifier capable of delivering a plurality of output signals, these output signals being controlled by a plurality of input signals. A multiple-input and multiple-output amplifier of the invention comprises a common input terminal, 4 signal input terminals, 4 signal output terminals, a common terminal amplifier, 4 active sub-circuits and a feedback network. Each active sub-circuit has a sub-circuit input terminal connected to one of the signal input terminals, a sub-circuit output terminal connected to one of the signal output terminals and a sub-circuit common terminal. The feedback network has four C terminals and one R terminal. Each of said C terminals of the feedback network is coupled to the sub-circuit common terminal of one of said active sub-circuits. The output terminal of the common terminal amplifier is coupled to said R terminal of the feedback network.


The invention relates to a method and a device for pseudo-differential transmission in interconnections used for sending a plurality of electrical signals. The ends of an interconnection having 4 transmission conductors and a return conductor distinct from the reference conductor are each connected to a termination circuit. Three damping circuits are connected between the return conductor and the reference conductor. The transmitting circuits receive at their inputs the signals from the 4 channels of the two sources, and are connected to the conductors of the interconnection. A transmitting circuit in the activated state produces natural electrical variables, each natural electrical variable being allocated to one and only one channel. The receiving circuits are connected to the conductors of the interconnection, each receiving circuit being such that the 4 channels of a source connected to a transmitting circuit in the activated state are sent to the four channels of the destinations without noticeable echo, internal crosstalk and external crosstalk.


The invention relates to a device for pseudo-differential transmission through interconnections used for sending a plurality of electrical signals. An interconnection comprises 4 transmission conductors and 5 elementary return conductors which are distinct from the reference conductor. One end of the interconnection is connected to a termination circuit. A transmitting circuit receives at its input the signals from the 4 channels of a source, and is connected to the conductors of the interconnection. Each output signal of a receiving circuit is mainly determined by one or more of the voltages between one of its signal terminals connected to the transmission conductors and its common terminal connected to the elementary return conductors. The signals of the 4 channels of the source are sent to the four channels of the destinations without noticeable external crosstalk.


The invention relates to a method and a device for pseudo-differential transmission through interconnections used for sending a plurality of electrical signals. An interconnection having 4 transmission conductors and a return conductor distinct from the reference conductor cannot be modeled as a uniform multiconductor transmission line. Each end of the interconnection is connected to a termination circuit. Three damping circuits are connected between the return conductor and the reference conductor. The transmitting circuits receive at their inputs the signals from the 4 channels of the two sources, and are connected to the interconnection. The receiving circuits are connected to the interconnection, each receiving circuit being such that the signals of the 4 channels of a source connected to a transmitting circuit in the activated state are sent to the four channels of the destinations, without noticeable echo, internal crosstalk and external crosstalk.

Loading Excem collaborators
Loading Excem collaborators