Exa Corporation

Burlington, MA, United States

Exa Corporation

Burlington, MA, United States

Time filter

Source Type

A computer-implemented method for simulating fluid flow using a lattice Boltzmann (LB) approach that includes assigning values for the wall shear stress on a per-facet (e.g., per-surfel) basis based on whether the fluid flow is laminar or turbulent is described herein.


A method comprising: simulating, in a lattice velocity set, movement of particles in a volume of fluid, with the movement causing collision among the particles; based on the simulated movement, determining relative particle velocity of a particle at a particular location within the volume, with the relative particle velocity being a difference between (i) an absolute velocity of the particle at the particular location within the volume and measured under zero flow of the volume, and (ii) a mean velocity of one or more of the particles at the particular location within the volume; and determining, based on the relative particle velocity, a non-equilibrium post-collide distribution function of a specified order that is representative of the collision.


Patent
Exa Corporation | Date: 2017-01-25

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for fluid blob tracking. One of the methods includes identifying, by a computer system, a connected fluid phase region in a flow simulation. The method includes tracking, by the computer system, the connected fluid phase region over a first timeframe and a second timeframe. The method also includes determining, by the computer system, movement of the connected fluid phase region from the first timeframe to the second timeframe based on the tracking.


Methods, systems, and apparatus, including computer programs encoded on computer storage media, for processing data representing the effect of tortuosity on the acoustic behavior of a fluid in a porous medium. One of the methods includes generating by a first data processing program of the data processing apparatus, a model of acoustic behavior of a fluid in a porous medium including an effect of tortuosity, with the model comprising a time variable indicative of a sound speed of the fluid. The method includes rescaling the time variable of the model based on the sound speed in a fluid in the porous medium. The method also includes simulating the acoustic behavior including the effect of tortuosity of the porous medium based on the rescaling of the time-related variables within the model.


Patent
Exa Corporation | Date: 2015-03-17

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for fluid blob tracking. One of the methods includes identifying, by a computer system, a connected fluid phase region in a flow simulation. The method includes tracking, by the computer system, the connected fluid phase region over a first timeframe and a second timeframe. The method also includes determining, by the computer system, movement of the connected fluid phase region from the first timeframe to the second timeframe based on the tracking.


Patent
Exa Corporation | Date: 2015-05-12

A computer-implemented method for simulating flow and acoustic interaction of a fluid with a porous medium includes simulating activity of a fluid in a first volume adjoining a second volume occupied by a porous medium, the activity of the fluid in the first volume being simulated so as to model movement of elements within the first volume and using a first model having a first set of parameters, simulating activity of the fluid in the second volume occupied by the porous medium, the activity in the second volume being simulated so as to model movement of elements within the second volume and using a second model having a second set of parameters and differing from the first model in a way that accounts for flow and acoustic properties of the porous medium, and simulating movement of elements between the first volume and the second volume at an interface between the first volume and the second volume.


A method comprising: simulating, in a lattice velocity set, movement of particles in a volume of fluid, with the movement causing collision among the particles; based on the simulated movement, determining relative particle velocity of a particle at a particular location within the volume, with the relative particle velocity being a difference between (i) an absolute velocity of the particle at the particular location within the volume and measured under zero flow of the volume, and (ii) a mean velocity of one or more of the particles at the particular location within the volume; and determining, based on the relative particle velocity, a non-equilibrium post-collide distribution function of a specified order that is representative of the collision.


Patent
Exa Corporation | Date: 2014-05-15

This description relates to computer simulation of physical processes, such as computer simulation of multi-species flow through porous media including the determination/estimation of relative permeabilities for the multi-species flow through the porous media.


Patent
Exa Corporation | Date: 2015-12-29

Methods, systems, and apparatus, including computer programs encoded on computer storage media, for fluid blob tracking. One of the methods includes identifying, by a computer system, a connected fluid phase region in a flow simulation. The method includes tracking, by the computer system, the connected fluid phase region over a first timeframe and a second timeframe. The method also includes determining, by the computer system, movement of the connected fluid phase region from the first timeframe to the second timeframe based on the tracking.


A method includes simulating, in a lattice velocity set, transport of particles in a volume of fluid, with the transport causing collision among the particles; and generating a distribution function for transport of the particles, wherein the distribution function comprises a thermodynamic step and a particle collision step, and wherein the thermodynamic step is substantially independent of and separate from the particle collision step.

Loading Exa Corporation collaborators
Loading Exa Corporation collaborators