Time filter

Source Type

Park J.S.,Yonsei University | Kang D.H.,Ewha Research Center for Systems Biology | Kang D.H.,Ewha Womans University | Lee D.H.,Yonsei University | Bae S.H.,Yonsei University
Biochemical and Biophysical Research Communications | Year: 2015

Nonalcoholic fatty liver disease (NAFLD), frequently associated with obesity and diabetes mellitus, is caused by the accumulation of excess fatty acids within liver cells. Palmitic acid (PA), a common saturated fatty acid found in mammals, induces the generation of reactive oxygen species (ROS) and elicits apoptotic cell death, known as lipotoxicity. However, protective mechanisms against PA-induced lipotoxicity have not been elucidated. In this study, we aimed to clarify the role of p62, an adapter protein in the autophagic process, as well as the nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway, in protecting cells from PA-induced lipotoxicity. The Nrf2-Keap1 pathway is essential for the protection of cells from oxidative stress. p62 enhances its binding to Keap1 and leads to Nrf2 activation. Here, we show that PA potentiates Keap1 degradation and thereby activates the transcription of Nrf2 target genes partially through autophagy. Furthermore, this PA-mediated Keap1 degradation depends on p62. Correspondingly, a lack of p62 attenuates the PA-mediated Nrf2 activation and increases the susceptibility of cells to oxidative stress. These results indicate that p62 plays an important role in protecting cells against lipotoxicity through Keap1 degradation-mediated Nrf2 activation. © 2015 Elsevier Inc. All rights reserved.

Park J.S.,Severance Biomedical Science Institute | Park J.S.,Yonsei University | Kang D.H.,Ewha Research Center for Systems Biology | Kang D.H.,Ewha Womans University | And 4 more authors.
Biochemical and Biophysical Research Communications | Year: 2015

Peroxisome proliferator-activated receptor α (PPARα) activates the β-oxidation of fatty acids in the liver. Fenofibrate is a potent agonist of PPARα and is used in the treatment of hyperlipidemia. Fenofibrate treatment often induces the production of intracellular reactive oxygen species (ROS), leading to cell death. The nuclear factor erythroid 2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway is an essential component of the defense mechanism against oxidative stress. However, the molecular mechanism underlying the regulation of the Nrf2-Keap1 pathway in fenofibrate-induced cell death is not known. In this study, we demonstrated that fenofibrate induces Keap1 degradation and Nrf2 activation. This fenofibrate-mediated Keap1 degradation is partly dependent on autophagy. Furthermore, fenofibrate-induced Keap1 degradation followed by Nrf2 activation is mainly mediated by p62, which functions as an adaptor protein in the autophagic pathway. Consistent with these findings, ablation of p62 increased fenofibrate-mediated apoptotic cell death associated with ROS accumulation. These results strongly suggest that p62 plays a crucial role in preventing fenofibrate-induced cell death. © 2015 Elsevier Inc.

Jung Y.,Ewha Research Center for Systems Biology | Jung Y.,Ewha Womans University | Jun Y.,Ewha Research Center for Systems Biology | Jun Y.,Ewha Womans University | And 12 more authors.
Oncotarget | Year: 2015

SLC22A18, solute carrier family 22, member 18, has been proposed to function as a tumor suppressor based on its chromosomal location at 11p15.5, mutations and aberrant splicing in several types of cancer and down-regulation in glioblastoma. In this study, we sought to demonstrate the significance of SLC22A18 as a tumor suppressor in colorectal cancer (CRC) and provide mechanistic bases for its function. We first showed that the expression of SLC22A18 is significantly down-regulated in tumor tissues using matched normal-tumor samples from CRC patients. This finding was also supported by publically accessible data from The Cancer Genome Atlas (TCGA). Functionally, SLC22A18 inhibits colony formation and induces of G2/M arrest consistent with being a tumor suppressor. Interestingly, suppression of KRAS by RNA interference promotes SLC22A18 expression, and expression of SLC22A18 in turn inhibits KRASG12D-mediated anchorage independent growth of NIH3T3 cells indicating a mutual negative interaction. Finally, we evaluated diagnostic and prognostic values of SLC22A18 using clinical and gene expression data from TCGA which revealed a significantly worse long-term prognosis for patients with low level SLC22A18 expression. In sum, we established SLC22A18 as a tumor suppressor in colon epithelial cells and propose that SLC22A18 is potentially a marker of diagnostic and prognostic values. © 2015.

Jung Y.,Ewha Research Center for Systems Biology | Jung Y.,Ewha Womans University | Lee S.,Ewha Research Center for Systems Biology | Lee S.,Ewha Womans University | And 19 more authors.
Clinical Cancer Research | Year: 2011

Purpose: Identification of novel biomarkers of cancer is important for improved diagnosis, prognosis, and therapeutic intervention. This study aimed to identify marker genes of colorectal cancer (CRC) by combining bioinformatics analysis of gene expression data and validation experiments using patient samples and to examine the potential connection between validated markers and the established oncogenes such as c-Myc and K-ras. Experimental Design: Publicly available data from GenBank and Oncomine were meta-analyzed leading to 34 candidate marker genes of CRC. Multiple case-matched normal and tumor tissues were examined by RT-PCR for differential expression, and 9 genes were validated as CRC biomarkers. Statistical analyses for correlation with major clinical parameters were carried out, and RNA interference was used to examine connection with major oncogenes. Results: We show with high confidence that 9 (ECT2, ETV4, DDX21, RAN, S100A11, RPS4X, HSPD1, CKS2, and C9orf140) of the 34 candidate genes are expressed at significantly elevated levels in CRC tissues compared to normal tissues. Furthermore, high-level expression of RPS4X was associated with nonmucinous cancer cell type and that of ECT2 with lack of lymphatic invasion while upregulation of CKS2 was correlated with early tumor stage and lack of family history of CRC. We also demonstrate that RPS4X and DDX21 are regulatory targets of c-Myc and ETV4 is downstream to K-ras signaling. Conclusions: We have identified multiple novel biomarkers of CRC. Further analyses of their function and connection to signaling pathways may reveal potential value of these biomarkers in diagnosis, prognosis, and treatment of CRC. ©2011 AACR.

Choi M.K.,Ewha Womans University | Seong I.,Ewha Womans University | Seong I.,Ewha Research Center for Systems Biology | Kang S.A.,Ewha Womans University | And 2 more authors.
Molecules and Cells | Year: 2014

Adipose-derived stem cells represent a type of mesenchymal stem cells with the attendant capacity to self-renew and differentiate into multiple cell lineages. We have performed a microarray-based gene expression profiling of osteogenic differentiation and found that the transcription factor Sox11 is down-regulated during the process. Functional assays demonstrate that down-regulation of Sox11 is required for an efficient differentiation. Furthermore, results from forced expression of constitutively-active and dominant-negative derivatives of Sox11 indicate that Sox11 functions as a transcriptional activator in inhibiting osteogenesis. Sox11 thus represents a novel regulator of osteogenesis whose expression and activity can be potentially manipulated for controlled differentiation. © The Korean Society for Molecular and Cellular Biology. All rights reserved.

Discover hidden collaborations