Evolution and Behavior

Circle Pines, MN, United States

Evolution and Behavior

Circle Pines, MN, United States
Time filter
Source Type

Published in Proceedings of the National Academy of Sciences of the United States of America (PNAS), the study estimates that lion numbers in West and Central Africa are declining sharply and are projected to decline a further 50% in the next two decades without a major conservation effort. Lion numbers are also declining, albeit less dramatically, in East Africa, long considered the main stronghold of the species. The study also shows that almost all lion populations that historically numbered at least 500 individuals are in decline. A team of scientists from global wild cat conservation organisation Panthera, Oxford University's WildCRU, Grimsö Wildlife Research Station, IUCN Species Survival Commission Cat Specialist Group, and the Department of Ecology, Evolution and Behavior at the University of Minnesota estimated the trajectory of lion populations by compiling and analysing regional population trend data for 47 different lion populations across Africa. The analysis showed that whereas most lion populations in West, Central, and East Africa are declining, increases in lion populations occurred in four southern countries: Botswana, Namibia, South Africa and Zimbabwe. Lead author Dr Hans Bauer of WildCRU said: 'These findings clearly indicate that the decline of lions can be halted, and indeed reversed as in southern Africa. Unfortunately, lion conservation is not happening at larger scales, leading to a vulnerable status of lions globally. In fact, the declines in many countries are quite severe and have enormous implications. 'If resources for wild lands cannot keep pace with mounting levels of threat, the flagship species of the African continent may cease to exist in many countries.' Globally, lions are listed as Vulnerable on the IUCN Red List of Threatened Species, though the species is considered to be Critically Endangered in West Africa. The results of this study reaffirm the lion's conservation status in West Africa and further suggest that regional assessments yield a more accurate picture of lion populations than do global assessments. Based on the data, the authors recommend that the lion be regionally uplisted to Endangered in Central and East Africa, while populations in southern Africa meet the criteria for Least Concern. Dr Luke Hunter, President and Chief Conservation Officer of Panthera and a co-author, said: 'We cannot let progress in southern Africa lead us into complacency. Many lion populations are either gone or expected to disappear within the next few decades. The lion plays a pivotal role as the continent's top carnivore, and the free-fall of Africa's lion populations we are seeing today could inexorably change the landscape of Africa's ecosystems.' The authors note that conservation efforts in southern Africa are successful for a number of reasons, including low human density, significant resources, and perhaps most importantly, the reintroduction of lions in small, fenced and intensively managed and funded reserves. Dr Paul Funston, Senior Director of Panthera's Lion Program, said: 'If we don't address these declines urgently, and at a massive scale, the intensively managed populations in southern Africa will be a poor substitute for the freely roaming lion populations in the iconic savannahs of East Africa. In our view, that's not an option.' The study drew on the most comprehensive dataset so far compiled on the lion, which also informed the most recent Red List assessment of the species. Senior author Professor Craig Packer of the University of Minnesota, who also serves on Panthera's Scientific Council, said: 'Estimating future population trends requires sophisticated forecasting techniques, and we performed one of the most comprehensive statistical analyses of conservation status over such a large scale. The results clearly indicate the need for immediate action across most of Africa.' Explore further: Searching for the last lions in Nigeria More information: Hans Bauer et al. Lion ( ) populations are declining rapidly across Africa, except in intensively managed areas , Proceedings of the National Academy of Sciences (2015). DOI: 10.1073/pnas.1500664112 Journal reference: Proceedings of the National Academy of Sciences

Voss R.S.,American Museum of Natural History | Jansa S.A.,Evolution and Behavior | Jansa S.A.,University of Minnesota
Biological Reviews | Year: 2012

Mammals that prey on venomous snakes include several opossums (Didelphidae), at least two hedgehogs (Erinaceidae), several mongooses (Herpestidae), several mustelids, and some skunks (Mephitidae). As a group, these taxa do not share any distinctive morphological traits. Instead, mammalian adaptations for ophiophagy seem to consist only in the ability to resist the toxic effects of snake venom. Molecular mechanisms of venom resistance (as indicated by biochemical research on opossums, mongooses, and hedgehogs) include toxin-neutralizing serum factors and adaptive changes in venom-targeted molecules. Of these, toxin-neutralizing serum factors have received the most research attention to date. All of the toxin-neutralizing serum proteins discovered so far in both opossums and mongooses are human α1B-glycoprotein homologs that inhibit either snake-venom metalloproteinases or phospholipase A2 myotoxins. By contrast, adaptive changes in venom-targeted molecules have received far less attention. The best-documented examples include amino-acid substitutions in mongoose nicotinic acetylcholine receptor that inhibit binding by α-neurotoxins, and amino-acid substitutions in opossum von Willebrand factor (vWF) that are hypothesized to weaken the bond between vWF and coagulopathic C-type lectins. Although multiple mechanisms of venom resistance are known from some species, the proteomic complexity of most snake venoms suggests that the evolved biochemical defences of ophiophagous mammals are likely to be far more numerous than currently recognized. Whereas most previous research in this field has been motivated by the potential for medical applications, venom resistance in ophiophagous mammals is a complex adaptation that merits attention from comparative biologists. Unfortunately, evolutionary inference is currently limited by ignorance about many relevant facts that can only be provided by future research. © 2012 The Authors. Biological Reviews © 2012 Cambridge Philosophical Society.

Koch K.A.,219 Hodson Hall | Quiram G.L.,Evolution and Behavior | Venette R.C.,U.S. Department of Agriculture
Urban Forestry and Urban Greening | Year: 2010

Oak wilt, caused by the invasive fungal pathogen Ceratocystis fagacearum (Bretz) Hunt, is a serious and fatal disease of oaks, Quercus spp., with red oaks (section Lobatae) generally being more susceptible than white oaks (section Quercus). Oak wilt was first recognized in North America in 1944 and has since been confirmed in 24 eastern, midwestern, and southern states. The purpose of this paper is to review relevant literature on the efficacy of oak wilt treatment options. Root disruption, sanitation, and chemical control methods have been used most often to manage the disease. Root disruption has primarily focused on severing root grafts between oaks. Sanitation has focused on removal and proper disposal of potential spore-producing trees. Chemical control has focused on the use of systemic triazole fungicides. Efficacy of treatments can vary significantly, for example from 54% to 100% for root graft barriers. Educational programs can increase prevention efforts, detection, compliance with recommended management methods, and overall efficacy. Our review confirms that management programs should address underground and overland spread and include an educational component.

May G.,Evolution and Behavior | May G.,University of Minnesota | Nelson P.,Evolution and Behavior | Nelson P.,University of Minnesota
Functional Ecology | Year: 2014

We examine theoretical and empirical results to determine the importance of microbe-microbe interactions in the evolution of defensive traits. Theoretical models show that the evolution of parasitism and the maintenance of mutualisms in multispecies interactions will depend on interactions with the host as well as with the defensive symbionts. At the community level, selection for defensive traits will vary greatly with ecological context and such spatial or temporal variation itself may stabilize defensive mutualisms. Studies of fungal endophytes within plant hosts demonstrate that endophytes acting as defensive mutualists may derive fitness benefits from the parasite as well as the host and suggest that interactions between co-occurring symbionts within hosts may lead to the evolution of virulence. © 2013 The Authors. Functional Ecology © 2013 British Ecological Society.

He Z.,University of Oklahoma | Piceno Y.,Lawrence Berkeley National Laboratory | Deng Y.,University of Oklahoma | Xu M.,University of Oklahoma | And 9 more authors.
ISME Journal | Year: 2012

One of the major factors associated with global change is the ever-increasing concentration of atmospheric CO 2. Although the stimulating effects of elevated CO 2 (eCO 2) on plant growth and primary productivity have been established, its impacts on the diversity and function of soil microbial communities are poorly understood. In this study, phylogenetic microarrays (PhyloChip) were used to comprehensively survey the richness, composition and structure of soil microbial communities in a grassland experiment subjected to two CO 2 conditions (ambient, 368 p.p.m., versus elevated, 560 p.p.m.) for 10 years. The richness based on the detected number of operational taxonomic units (OTUs) significantly decreased under eCO 2. PhyloChip detected 2269 OTUs derived from 45 phyla (including two from Archaea), 55 classes, 99 orders, 164 families and 190 subfamilies. Also, the signal intensity of five phyla (Crenarchaeota, Chloroflexi, OP10, OP9/JS1, Verrucomicrobia) significantly decreased at eCO 2, and such significant effects of eCO 2 on microbial composition were also observed at the class or lower taxonomic levels for most abundant phyla, such as Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria, suggesting a shift in microbial community composition at eCO 2. Additionally, statistical analyses showed that the overall taxonomic structure of soil microbial communities was altered at eCO 2. Mantel tests indicated that such changes in species richness, composition and structure of soil microbial communities were closely correlated with soil and plant properties. This study provides insights into our understanding of shifts in the richness, composition and structure of soil microbial communities under eCO 2 and environmental factors shaping the microbial community structure. © 2012 International Society for Microbial Ecology All rights reserved.

McKay B.D.,Evolution and Behavior | Zink R.M.,Evolution and Behavior
Molecular Phylogenetics and Evolution | Year: 2010

Gene tree paraphyly is a potentially serious problem because many phylogenetic and phylogeographic studies assume species are monophyletic. Funk and Omland (Funk, D.J., Omland, K.E., 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annu. Rev. Ecol. Evol. Syst. 34, 397-423) found that a seemingly high proportion of bird species (16.7%) were paraphyletic in their mtDNA gene trees. This could imply that mtDNA is an unreliable or even misleading marker for delimiting species. We expand on Funk and Omland's survey and identify the causes of species-level paraphyly in birds. We find that in most cases paraphyly is caused by incorrect taxonomy. In such cases, mtDNA serves systematics by exposing and clarifying taxonomic errors. We find the next most common cause of paraphyly to be incomplete lineage sorting due to recent speciation. Here mtDNA gives a consistent picture of evolution, given the timeframe, but it is not useful for delimiting species and other criteria must be employed. There were relatively few clear instances of paraphyly due to hybridization, though there were more cases where incomplete lineage sorting and hybridization could not be distinguished. We ultimately conclude that, far from a hindrance, mtDNA is generally a useful tool that should continue to facilitate delimitation of avian species. © 2009 Elsevier Inc. All rights reserved.

News Article | February 28, 2017
Site: www.eurekalert.org

We've long known that diverse stands of trees tend to be more productive than monocultures. What we haven't known is why. In a paper published today in the scientific journal Nature Ecology & Evolution, researchers from the University of Minnesota and Université du Québec à Montréal show the talent behind the trait: Thanks to their natural different growth forms and ability to modify their shape to fit the available space, multiple species are able to fill in vertical gaps with branches and leaves. This maximizes their combined ability to soak up the sun falling on a particular plot of land and turn it into tree -- absorbing planet-warming carbon dioxide and producing wood in the process. "It's a common hypothesis that complementarity matters," says lead author Laura Williams, a graduate student in Ecology, Evolution and Behavior with the College of Biological Sciences at the University of Minnesota and advised by professors Peter Reich and Jeannine Cavender-Bares. "This is a case study that provides evidence to support complementarity in the use of space." To learn how diversity boosts productivity, Williams and colleagues looked at 37 plots of trees that had been planted in Montreal four years previously, ranging from a monoculture to a plot with 12 different tree species commonly found in northern forests. Using simple tools -- measuring tapes and height poles -- they characterized the vertical distribution of branches and leaves and amount of trunk biomass trees produced under the various combinations. They found that in plots with multiple species, the different natural growth forms and light requirements of the various species, combined with their ability to tailor their growth to their neighbors, made it possible for the trees to send branches into places where they could better use the available light, growing better together than in single-species plots. Not only that, but the better equipped the particular combination of species was to use the range of light environments within the forest canopy, the better packed the crowns and the more biomass the plot supported. In addition to providing a better understanding of how trees function in ecosystems, the research has implications for forest management practice. Currently only a small fraction of the world's plantation forests, less than 1 percent, contain more than one species. These findings provide support for the use of multiple species as a way to boost forests' ability to produce wood and remove carbon dioxide from the atmosphere. "This study shows how we can think of forests as communities made up of trees that fit together, partition labor and react to their neighbors in ways that affect how the entire ecosystem functions," Williams says. "In helping to answer the long-unresolved question of why more diverse mixtures grow more, we've improved our understanding of how to sustain and improve the functioning of forests in ways that contribute to the well-being of humans and our planet."

News Article | November 9, 2015
Site: phys.org

Venom is a complex mixture of proteins and other toxic chemicals produced by animals such as snakes and spiders, either to incapacitate their prey or to defend against predators. The influence of positive selection (the process by which a protein changes rapidly over evolutionary time scales) in expanding and diversifying animal venoms is widely recognized. This process was hypothesized to result from an evolutionary chemical arms race, in which the invention of potent venom in the predatory animals and the evolution of venom resistance in their prey animals, exert reciprocal selection pressures. In contrast to positive selection, the role of purifying selection (also known as negative selection, which is the selective removal of deleterious genetic changes from a population) has rarely been considered in venom evolution. Moreover, venom research has mostly neglected ancient animal groups in favor of focusing on venomous snakes and cone snails, which are both "young" animal groups that originated only recently in evolutionary timescales, approximately 50 million years ago. Consequently, it was concluded that venom evolution is mostly driven by positive selection. In the new study, Dr. Yehu Moran at the Hebrew University's Department of Ecology, Evolution and Behavior and the guest scientist Dr. Kartik Sunagar examined numerous venom genes in different animals in order to unravel the unique evolutionary strategies of toxin gene families. The researchers analyzed and compared the evolutionary patterns of over 3500 toxin sequences from 85 gene families. These toxins spanned the breadth of the animal kingdom, including ancient venomous groups such as centipedes, scorpions, spiders, coleoids (octopus, cuttlefish and squids) and cnidarians (jellyfish, sea anemones and hydras). Unexpectedly, despite their long evolutionary histories, ancient animal groups were found to have only accumulated low variation in their toxins. The analysis also revealed a striking contrast between the evolution of venom in ancient animal groups as compared to evolutionarily "young" animals. It also highlighted the significant role played by purifying selection in shaping the composition of venoms. According to Dr. Yehu Moran, "Our research shows that while the venoms of ancient lineages evolve more slowly through purifying selection, the venoms in more recent lineages diversify rapidly under the influence of positive selection." The findings enable the postulation of a new theory of venom evolution. According to this theory, toxin-producing genes in young venomous groups that enter a novel ecological niche, experience a strong influence of positive selection that diversifies their toxins, thus increasing their chances to efficiently paralyze relevant prey and predatory species in the new environment. However, in the case of the ancient venomous groups, where the venom is already "optimized" and highly suitable for the ecological niche, the venom's rate of accumulating variations slows down under the influence of purifying selection, which preserves the potent toxins generated previously. The proposed "two-speed" mode of venom evolution highlights the fascinating evolutionary dynamics of this complex biochemical cocktail, by showing for the first time the significant roles played by different forces of natural selection in shaping animal venoms. According to Drs. Moran and Sunagar, "The 'two-speed' mode of evolution of animal venoms involves an initial period of expansion, resulting in the rapid diversification of the venom arsenal, followed by longer periods of purifying selection that preserve the now potent toxin pharmacopeia. However, species that have entered the stage of purification and fixation may re-enter the period of expansion if they experience a major shift in ecology and/or environment." More information: Kartik Sunagar et al. The Rise and Fall of an Evolutionary Innovation: Contrasting Strategies of Venom Evolution in Ancient and Young Animals, PLOS Genetics (2015). DOI: 10.1371/journal.pgen.1005596

News Article | November 11, 2015
Site: www.rdmag.com

Researchers Kartik Sunagar and Yehu Moran describe the evolution of venom in animals as a “chemical arms race.” Venom and venom resistance evolve to exert reciprocal selection pressures on one another. A constant battle is waged between predator and prey. But the two researchers, both of the Hebrew Univ. of Jerusalem’s Dept. of Ecology, Evolution and Behavior, believe too much focus is placed on venomous animals relatively young on the evolutionary timescale. This led to the conclusion venom evolution was driven by positive selection, in which a protein changes rapidly over large evolutionary timescales. However, after analyzing the evolutionary patterns of 3,500 toxin sequences from 85 gene families, including ancient and young specimens that run the gamut of the animal kingdom, the researchers proposed a new “two-speed” mode of venom evolution. “Our research shows that while the venoms of ancient lineages evolve more slowly through purifying selection, the venoms in more recent lineages diversify rapidly under the influence of positive selection,” said Moran. Also referred to as negative selection, purifying selection allows selective removal of deleterious genetic changes from a population. Ancient venomous groups, such as centipedes and cnidarians, were heavily influenced by purifying selection, resulting in low toxin variations. “We propose that venom encoding genes mostly employ a ‘two-speed’ mode of evolution, where episodic diversifying selection accompanies earlier stages of ecological specialization (e.g. diet and range expansion), resulting in the rapid diversification of the venom arsenal, followed by a longer period of purification and fixation that ensure the sustainability of the venom potency,” the researchers write in PLOS Genetics. According to the “two-speed” theory, ancient animal groups optimized their venom at some point in the past, allowing them to fine-tune the formula over the ensuing years. “Whilst positive selection increases the diversity of venom proteins, purifying selection probably aids in preserving the potency of the venom by filtering out mutations that negatively affect toxin efficiency,” the researchers write. “However, species that have entered the stage of purification and fixation may re-enter the period of expansion if they experience a major shift in ecology and/or environment,” according to the researchers. Whether venoms employed for non-predatory functions follows the proposed evolutionary model remains to be seen, according to the researchers.

What accounts for this dramatic divergence in the two insects' development? Within the last decade, many scientists have come to believe that DNA methylation—a mode of genetic regulation in which chemical tags turn genes on or off—is involved. However, this explanation doesn't hold up to scrutiny, according to new findings from Rockefeller University published on January 21 in Current Biology. The researchers studied DNA methylation in clonal raider ants, Cerapachys biroi, which can switch between performing either brood care or egg-laying. When comparing methylation patterns in the brains of workers and queens, they found no overall differences. "Discovering that there is no evidence to support methylation as a reason why two ants can behave so differently was, on the one hand, a little sobering," says senior author Daniel Kronauer, assistant professor and head of Rockefeller's Laboratory of Social Evolution and Behavior. "On the other hand, this finding could be really important for those who want to understand the evolution of social behavior and the function of DNA methylation in insects." Previous research had found methylation differences in the brains of insect queens and workers—making many scientists believe these differences cause the animals to take on different social roles. "It was a great story, and everyone ran with it," says Peter Oxley, a co-first author and postdoc in the lab. But these previous studies looked at average levels of methylation within a sample of each insect type—taking, for instance, a group of worker ants, mixing their DNA together, and measuring the average amount of methylation among all their brains. These experiments consistently found differences between worker and queen insects—but that test alone won't tell you if the difference is significant, explains Kronauer. The average amount of methylation present in one group will most likely differ from the average amount present in another group. To be meaningful, those differences must be consistent across multiple groups of workers and queens. To take that extra step, members of Kronauer's team—including co-first author Romain Libbrecht, who at the time was a postdoc in Kronauer's lab and presently works at the University of Lausanne, in Switzerland—measured methylation levels from multiple samples of ants performing brood care or laying eggs. In these experiments, the distinctions found in previous research didn't hold up. The team did see differences in methylation between samples; however, these differences were equivalent between samples of workers, as well as between samples of queens. "It dawned on us that there was really nothing there," Kronauer says. It's not that methylation doesn't do anything at all—in fact, the researchers found that it is primarily associated with genes that serve crucial functions for workers and queens alike, suggesting that DNA methylation might contribute to the stable expression of so-called household genes. And, Kronauer notes, "we can't say for sure there is no difference in methylation between queens and workers. What our study does show is that the current evidence is inconclusive. That does not rule out the possibility that future studies with even higher resolution and more statistical power could find such differences." Explore further: Genome of clonal raider ant provides promising model to study social evolution and behavior More information: Romain Libbrecht et al. Robust DNA Methylation in the Clonal Raider Ant Brain, Current Biology (2016). DOI: 10.1016/j.cub.2015.12.040 , www.cell.com/current-biology/abstract/S0960-9822(15)01571-7

Loading Evolution and Behavior collaborators
Loading Evolution and Behavior collaborators