Time filter

Source Type

Monheim am Rhein, Germany

Richter N.,Evocatal GmbH | Groger H.,Friedrich - Alexander - University, Erlangen - Nuremberg
Applied Microbiology and Biotechnology | Year: 2011

A recombinant enoate reductase from Gluconobacter oxydans was heterologously expressed, purified, characterised and applied in the asymmetric reduction of activated alkenes. In addition to the determination of the kinetic properties, the major focus of this work was to utilise the enzyme in the biotransformation of different interesting compounds such as 3,5,5-trimethyl-2-cyclohexen-1,4-dione (ketoisophorone) and (E/Z)-3,7-dimethyl- 2,6-octadienal (citral). The reaction proceeded with excellent stereoselectivities (>99% ee) as well as absolute chemo- and regioselectivity, only the activated C=C bond of citral was reduced by the enoate reductase, while non-activated C=C bond and carbonyl moiety remained untouched. The described strategy can be used for the production of enantiomerically pure building blocks, which are difficult to prepare by chemical means. In general, the results show that the investigated enoate reductase is a promising catalyst for the use in asymmetric C=C bond reductions. © 2010 Springer-Verlag. Source

Richter N.,Evocatal GmbH | Hummel W.,Heinrich Heine University Dusseldorf
Enzyme and Microbial Technology | Year: 2011

A gene encoding an NADPH-dependent carbonyl reductase from Neurospora crassa (nccr) was cloned and heterologously expressed in Escherichia coli. The enzyme (NcCR) was purified and biochemically characterised. NcCR exhibited a restricted substrate spectrum towards various ketones, and the highest activity (468. U/mg) was observed with dihydroxyacetone. However, NcCR proved to be very selective in the reduction of different α- and β-keto esters. Several compounds were converted to the corresponding hydroxy ester in high enantiomeric excess (ee) at high conversion rates. The enantioselectivity of NcCR for the reduction of ethyl 4-chloro-3-oxobutanoate showed a strong dependence on temperature. This effect was studied in detail, revealing that the ee could be substantially increased by decreasing the temperature from 40 °C (78.8%) to -3 °C (98.0%). When the experimental conditions were optimised to improve the optical purity of the product, (S)-4-chloro-3-hydroxybutanoate (ee 98.0%) was successfully produced on a 300. mg (1.8. mmol) scale using NcCR at -3 °C. © 2011 Elsevier Inc. Source

Evocatal GmbH | Date: 2011-08-16

The present invention relates to the use of a protein comprising an LOV domain for the photosensitive defunctionalization of a molecule and to a method for the photosensitive defunctionalization of a target molecule.

Evocatal GmbH | Date: 2010-05-19

The present invention provides variants of fluorescent proteins, which are improved with regard to their properties for use as reporter proteins and/or in analytics. In particular, variants of fluorescent proteins are provided, which fluoresce brighter, show improved quantum yield and/or have shifted excitation or emission spectra. The fluorescent proteins according to the invention comprise in their LOV domain besides the substitution of a cysteine with an amino acid that does not covalently bind FMN at least one further point mutation.

Agency: Cordis | Branch: FP7 | Program: CP-TP | Phase: KBBE.2011.3.3-02 | Award Amount: 7.77M | Year: 2011

The objective of KYROBIO project is to broaden the toolbox of single enantiomer chiral chemicals that are produced by industry in Europe using biotechnological routes. The main target is applications of lyase enzymes to selectively synthesize molecules with multiple chiral centres applying enzymatic carbon-carbon and carbon-nitrogen bond formation as the key technical platforms. We will then apply synthetic biology to improve fermentation processes in order to generate better enzymes. Chiral compounds are an important class of chemicals that biocatalytic transformation has already demonstrated great potential to compete with chemocatalysts in their production with associated benefits that come from reductions in use of organic solvents, toxic metals and energy but application has been relatively limited. KYROBIO will address the main challenges with moving forward to the next generation of added value industrial applications of white biotechnology for high value chemical synthesis. Using a supradisciplinary approach ranging from enzyme development, chemistry, molecular biology, fermentation and innovative isolation techniques the bottlenecks to applying this new technology will be overcome. It is expected that promising candidate chemicals will be commercialised within three years of completion and so scale up with economic and feasibility studies that are also key technology developments. The consortium includes a strong presence of SMEs including SME leadership and also a large multinational company which ensures multiple routes to market for the outcomes of this project. We will also have economic and life cycle analysis coupled with significant dissemination plans to ensure wider understanding of this technology that will lead to increased acceptance and uptake. The use of this environmentally beneficial technology will help to keep the European chemicals industry at the forefront of white biotechnology and increase opportunities in economic and employment.

Discover hidden collaborations