Evocatal GmbH

Monheim am Rhein, Germany

Evocatal GmbH

Monheim am Rhein, Germany
SEARCH FILTERS
Time filter
Source Type

Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: BIOTEC-3-2014 | Award Amount: 11.39M | Year: 2015

Oxygen functionalities are key functional groups in many of todays chemicals and materials. The efficient introduction of oxygen-functionalities into raw materials are key chemical transformations in bulk and fine chemicals. Innovative bio-catalytic oxidation routes using molecular oxygen (from air) under benign and mild (pH) conditions such as ambient temperature and pressure can greatly improve the sustainability and economics of processes, but were so far mainly been applied in the pharma segments. In this segment, the enzyme-catalyzed step often represents the highest added value and the high price of the end-product (> 1000/kg) justifies less than optimal enzyme production and limitations in its catalytic efficiency. In order to achieve the widening of industrial application of enzymatic bio-oxidation processes to also larger volume but lower price chemical markets, ROBOX will demonstrate the techno-economic viability of bio-transformations of four types of robust oxidative enzymes: P450 monooxygenases (P450s), Baeyer-Villiger MonoOxygenase (BVMOs), Alcohol DeHydrogenase (ADH) and Alcohol OXidase (AOX) for which target reactions have already been validated on lab-scale in pharma, nutrition, fine & specialty chemicals and materials applications. ROBOX will demonstrate 11 target reactions on large scale for these markets in order to prepare them for scale up to commercial-scale plants. ROBOX is industry-driven with 2 major industrial players and 6 SMEs. It will assess the potential of technologies applied to become platform technologies technologies (multi-parameter screening systems, computational methodologies, plug bug expression systems) for broad replication throughout the chemical industry. The markets addressed within ROBOX represent a joint volume of over 6.000 ktons/year. The introduction of bio-oxidation processes is expected to bring substantial reductions in cost (up to -50%), energy use (-60%), chemicals (-16%) and GHG-emissions (-50%).


Grant
Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2011.3.3-02 | Award Amount: 7.77M | Year: 2011

The objective of KYROBIO project is to broaden the toolbox of single enantiomer chiral chemicals that are produced by industry in Europe using biotechnological routes. The main target is applications of lyase enzymes to selectively synthesize molecules with multiple chiral centres applying enzymatic carbon-carbon and carbon-nitrogen bond formation as the key technical platforms. We will then apply synthetic biology to improve fermentation processes in order to generate better enzymes. Chiral compounds are an important class of chemicals that biocatalytic transformation has already demonstrated great potential to compete with chemocatalysts in their production with associated benefits that come from reductions in use of organic solvents, toxic metals and energy but application has been relatively limited. KYROBIO will address the main challenges with moving forward to the next generation of added value industrial applications of white biotechnology for high value chemical synthesis. Using a supradisciplinary approach ranging from enzyme development, chemistry, molecular biology, fermentation and innovative isolation techniques the bottlenecks to applying this new technology will be overcome. It is expected that promising candidate chemicals will be commercialised within three years of completion and so scale up with economic and feasibility studies that are also key technology developments. The consortium includes a strong presence of SMEs including SME leadership and also a large multinational company which ensures multiple routes to market for the outcomes of this project. We will also have economic and life cycle analysis coupled with significant dissemination plans to ensure wider understanding of this technology that will lead to increased acceptance and uptake. The use of this environmentally beneficial technology will help to keep the European chemicals industry at the forefront of white biotechnology and increase opportunities in economic and employment.


Grant
Agency: European Commission | Branch: H2020 | Program: IA | Phase: BG-04-2014 | Award Amount: 7.40M | Year: 2015

INMARE stands for Industrial Applications of Marine Enzymes: Innovative screening and expression platforms to discover and use the functional protein diversity from the sea. It is a collaborative Innovation Action to streamline the pathways of discovery and industrial applications of new marine enzymes and bioactives for targeted production of fine chemicals, drugs and in environmental clean-up applications. The INMARE consortium will unify the multidisciplinary expertise and facilities of academic and industry partners. This will include integrating the following core activities: advanced technologies to access and sample unique marine biodiversity hot-spots; state-of-the art technologies for construction of metagenomic libraries; innovative enzyme screening assays and platforms; cutting-edge sequence annotation pipelines and bioinformatics resources; high-end activity screening technology; bioanalytical and bioprocess engineering facilities and expertise, nanoparticle-biocatalysts; high-quality protein crystallization and structural analysis facilities and experts in IP management for biotechnology. The companies involved in the project are market leaders in enzyme production and biocatalysis processes designed to efficiently deliver safer (pharmaceuticals) cheaper (agriculture) and biobased (biopolymers) products. They also have impressive track record in environmental clean-up technologies and are committed to promoting public understanding, awareness and dissemination of scientific research. The main emphasis will be focused on streamlining and shortening the pipelines for enzyme and bioactive compound discovery towards industrial applications through the establishing of marine enzyme collections with a high proportion of enzymes-allrounders. The project will also prioritize the identification of novel lead products and the delivery of improved prototypes for new biocatalytic processes.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-FP | Phase: KBBE-2008-3-2-07 | Award Amount: 4.98M | Year: 2009

The Project aims at the mining of individual enzymes and metabolic pathways from extremophilic marine organisms and the metagenomes from microbial communities from peculiar marine environments and consequent funnelling the new enzymatic reactions and processes towards the new biotechnological applications. Project builds up on the scientific and technological excellence of individual academic and industrial partners, and beyond that, on application of the state-of-the-art technologies for archiving, molecular screening for the activities (using a unique Surface Plasmon Resonance screening platform), protein structure elucidation, enzyme engineering and directed evolution and establishing new biotechnological processes (biocatalysis, synthesis of fine chemicals, etc.). Marine sampling hotspots to produce the metagenomic resources for their further exploration will cover the whole diversity of marine microbial life at its limits (hypersaline, low and high temperature, high pressure and low water activity conditions, etc.). Individual enzymes interacting with the substrates will be identified, and in case they are new, hyperexpressed and crystallized and their structures will be elucidated. Consequently, the most promising candidates will be scored against the chiral substrates of relevance for biocatalysis and their ability to perform in water-free systems will be evaluated, the directed evolution will be implemented to improve the performance, and specificity of the enzymes. A comprehensive bioinformatic survey throughout the whole tree of cellular life will reveal and suggest the new candidates homologous to the discovered new proteins, from other organisms to be cloned and assayed. The implementation of the set of new enzymes in the biotechnological processes for fine chemical synthesis and drug discovery will be conducted in a strong alliance with competent industrial partners.


Richter N.,Evocatal GmbH | Groger H.,Friedrich - Alexander - University, Erlangen - Nuremberg
Applied Microbiology and Biotechnology | Year: 2011

A recombinant enoate reductase from Gluconobacter oxydans was heterologously expressed, purified, characterised and applied in the asymmetric reduction of activated alkenes. In addition to the determination of the kinetic properties, the major focus of this work was to utilise the enzyme in the biotransformation of different interesting compounds such as 3,5,5-trimethyl-2-cyclohexen-1,4-dione (ketoisophorone) and (E/Z)-3,7-dimethyl- 2,6-octadienal (citral). The reaction proceeded with excellent stereoselectivities (>99% ee) as well as absolute chemo- and regioselectivity, only the activated C=C bond of citral was reduced by the enoate reductase, while non-activated C=C bond and carbonyl moiety remained untouched. The described strategy can be used for the production of enantiomerically pure building blocks, which are difficult to prepare by chemical means. In general, the results show that the investigated enoate reductase is a promising catalyst for the use in asymmetric C=C bond reductions. © 2010 Springer-Verlag.


Patent
Evocatal GmbH | Date: 2011-08-16

A FRET donor-acceptor pair for use as a biosensor, comprising at least two fluorescence proteins, wherein at least one fluorescence protein is stable with respect to a parameter to be detected by the biosensor and at least one fluorescence protein is unstable with respect to the parameter to be detected by the biosensor.


Patent
Evocatal GmbH | Date: 2010-05-19

The present invention provides variants of fluorescent proteins, which are improved with regard to their properties for use as reporter proteins and/or in analytics. In particular, variants of fluorescent proteins are provided, which fluoresce brighter, show improved quantum yield and/or have shifted excitation or emission spectra. The fluorescent proteins according to the invention comprise in their LOV domain besides the substitution of a cysteine with an amino acid that does not covalently bind FMN at least one further point mutation.


Patent
Evocatal GmbH | Date: 2011-08-16

The present invention relates to the use of a protein comprising an LOV domain for the photosensitive defunctionalization of a molecule and to a method for the photosensitive defunctionalization of a target molecule.


To investigate protein-protein interactions, protein foldings and protein localization and also in the secretion of proteins, in vivo reporter proteins are used in biotechnology and in basic research. In order to be able to utilize fluorescence reporters as markers for secretion processes, FMN-binding fluorescence proteins (FbFP) have been developed by us for the first time. The new fluorescence markers can be expressed like GFP in various bacteria. The binding of the chromophore FMN produces a cyan-green fluorescent protein which can be detected in vivo using all customary spectroscopic and microscopic methods. In contrast to GFP, this protein can also surprisingly be secreted via the Sec route and be converted to the fluorescence-active state in the periplasma.


Patent
Evocatal GmbH | Date: 2012-11-19

The invention concerns a polypeptide which can be isolated from the Brassicaceae family and which has at least the activity of a hydroxynitrile lyase (HNL). The hydroxynitrile lyase of the invention is the first HNL from the Brassicaceae family. The plants (Arabidopsis) from which this enzyme or its gene is isolated is also described as non-cyanogenic. All HNL-containing plants described so far are cyanogenic plants and so it has until now been assumed that only cyanogenic plants contain hydroxynitrile lyases. Surprisingly, it transpires that a polypeptide (AtHNL) of the invention is (R)-selective. The amino acid sequence gives a theoretical molecular weight of 29.2 kDa for the AtHNL subunit. The calculated molecular mass of the protein of approximately 30 kDa can be confirmed by SDS gel electrophoresis.

Loading Evocatal GmbH collaborators
Loading Evocatal GmbH collaborators