Entity

Time filter

Source Type

Troy, NY, United States

Patent
Evident Technologies | Date: 2014-12-03

Disclosed herein is a thermoelectric module and a method of producing a thermoelectric module via printing techniques. The method can include providing a first ink, the first ink including a first population of n-material semiconductor nanomaterials suspended in a solvent, and providing a second ink, the second ink including a second population of p-material semiconductor nanomaterials suspended in a solvent. Further, the method can include printing the first ink and the second ink on a substrate and applying a conducting layer electronically contacting both the first ink and the second ink printed on the substrate. The method may also include heating the substrate


Disclosed herein is a thermoelectric electrolysis system, the system including a thermoelectric device for deriving electricity from heat, an electrolysis device coupled to the thermoelectric device, an oxygen delivery system connected to the electrolysis device; and a hydrogen delivery system connected to the electrolysis device.


Disclosed herein are a thermoelectric device produced by a method utilizing consolidation techniques and a method of producing a thermoelectric device. The method can include layering a first powdered conductor in a die, layering a first powdered semiconductor material on the first powdered conductor layer, layering a second powdered conductor in the die, and consolidating each of the layers.


Herein disclosed is a method of forming a thermoelectric material having an optimized stoichiometry, the method comprising: reacting a precursor material including a population of nanocrystals with a first ionic solution and a second ionic solution to form a reacted mixture.


Embodiments of the invention relate generally to creating semiconductor junctions with reduced contact resistance. In one embodiment, the invention provides a method of forming a composition of material, the method comprising: providing at least two populations of semiconducting materials; layering the at least two populations of semiconducting materials to form at least two layers; and consolidating the at least two populations of semiconducting materials, wherein the consolidating creates an electrical connection between the at least two layers.

Discover hidden collaborations