Chandler, AZ, United States
Chandler, AZ, United States

Everspin Technologies is a private semiconductor company that develops and manufactures magnetic RAM or Magnetoresistive Random Access Memory , including stand-alone and embedded MRAM products. Wikipedia.


Time filter

Source Type

Patent
Everspin Technologies | Date: 2017-03-29

A dual tunnel barrier magnetic element has a free magnetic layer positioned between first and second tunnel barriers and an electrode over the second tunnel barrier. A two step etch process allows for forming an encapsulation material on a side wall of the electrode and the second tunnel barrier subsequent to the first etch for preventing damage to the first tunnel barrier when performing the second etch to remove a portion of the free layer.


Patent
Everspin Technologies | Date: 2017-01-14

Memory cells in a spin-torque magnetic random access memory (MRAM) include at least two magnetic tunnel junctions within each memory cell, where each memory cell only stores a single data bit of information. Access circuitry coupled to the memory cells are able to read from and write to a memory cell even when one of the magnetic tunnel junctions within the memory cell is defective and is no longer functional. Self-referenced and referenced reads can be used in conjunction with the multiple magnetic tunnel junction memory cells. In some embodiments, writing to the memory cell forces all magnetic tunnel junctions into a known state, whereas in other embodiments, a subset of the magnetic tunnel junctions are forced to a known state.


Patent
Everspin Technologies | Date: 2017-01-06

A magnetoresistive element (e.g., a spin-torque magnetoresistive memory element) includes a fixed magnetic layer, a free magnetic layer, having a high-iron alloy interface region located along a surface of the free magnetic layer, wherein the high-iron alloy interface region has at least 50% iron by atomic composition, and a first dielectric, disposed between the fixed magnetic layer and the free magnetic layer. The magnetoresistive element further includes a second dielectric, having a first surface that is in contact with the surface of the free magnetic layer, and an electrode, disposed between the second dielectric and a conductor. The electrode includes: (i) a non-ferromagnetic portion having a surface that is in contact with a second surface of the second dielectric, and (ii) a second portion having at least one ferromagnetic material disposed between the non-ferromagnetic portion of the electrode and the conductor.


Patent
Everspin Technologies | Date: 2017-01-18

In some examples, a nonvolatile storage element may be configured to store a state or value during a low power or powered down period of a circuit. For example, the nonvolatile storage element may include a bridge of resistive elements that have a resistive state that may be configured by applying voltages to multiple drive paths. A sense amplifier may be connected to the bridge in order to resolve a voltage differential associated with the bridge to ether power or ground and, thereby determine the state associated with on the nonvolatile storage element.


Patent
Everspin Technologies | Date: 2017-01-18

In some examples, a memory device is configured with a reduced command set and a variable burst length. In some instances, the variable burst length defines a page size associated with data to be loaded into a cache. In other instances, the variable burst length may be set on the fly per read/write command and, in some cases, the burst length may be utilized to define the page size associated with the read/write command.


Patent
Everspin Technologies | Date: 2017-01-09

Techniques and circuits for testing and configuring bias voltage or bias current for write operations in memory devices are presented. Registers and nonvolatile storage is included on the memory devices for storing values used to control testing of the memory devices as well as for configuring parameters related to both testing and normal operation.


Patent
Everspin Technologies | Date: 2017-01-06

A method of manufacturing one or more interconnects to magnetoresistive structure comprising (i) depositing a first conductive material in a via; (2) etching the first conductive material wherein, after etching the first conductive material a portion of the first conductive material remains in the via, (3) partially filling the via by depositing a second conductive material in the via and directly on the first conductive material in the via; (4) depositing a first electrode material in the via and directly on the second conductive material in the via; (5) polishing a first surface of the first electrode material wherein, after polishing, the first electrode material is (i) on the second conductive material in the via and (ii) over the portion of the first conductive material remaining in the via; and (6) forming a magnetoresistive structure over the first electrode material.


A magnetoresistive structure having two dielectric layers, and method of manufacturing same, includes a free magnetic layer positioned between the two dielectric layers. The method of manufacture comprises at least two etch processes and at least one encapsulation process interposed therebetween wherein the encapsulation is formed on sidewalls of the partially formed magnetoresistive stack between etch processes.


A chopping technique, and associated structure, is implemented to cancel the magnetic 1/f noise contribution in a Tunneling Magnetoresistance (TMR) field sensor. The TMR field sensor comprises a first bridge circuit including multiple TMR elements to sense a magnetic field and a second circuit to apply a bipolar current pulse adjacent to each TMR element. The current lines are serially or sequentially connected to a field source to receive the bipolar current pulse. The field sensor has an output comprising a high output and a low output in response to the bipolar pulse. This asymmetric response allows a chopping technique for 1/f noise reduction in the field sensor.


Patent
Everspin Technologies | Date: 2017-03-22

Structures and methods are disclosed for shielding magnetically sensitive components. One structure includes a substrate, a bottom shield deposited on the substrate, a magnetoresistive semiconductor device having a first surface and a second surface opposing the first surface, the first surface of the magnetoresistive semiconductor device deposited on the bottom shield, a top shield deposited on the second surface of the magnetoresistive semiconductor device, the top shield having a window for accessing the magnetoresistive semiconductor device, and a plurality of interconnects that connect the magnetoresistive semiconductor device to a plurality of conductive elements.

Loading Everspin Technologies collaborators
Loading Everspin Technologies collaborators