Time filter

Source Type

Agency: Cordis | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2011-1.1.17. | Award Amount: 15.90M | Year: 2012

Advanced solutions to the challenges that confront our technology-based society from energy and environment to health are crucially dependent on advanced knowledge of material properties down to the atomic scale. Neutron and Muon spectroscopy offer unique analytical tools for material investigation. They are thus an indispensible building block of the European Research Area and directly address the objectives of the Innovation Union Flagship Initiative. The knowledge creation via neutron and muon spectroscopy relies on the performance of a closely interdependent eco-system comprising large-scale facilities and academic and industrial users. The Integrated Infrastructure Initiative for Neutron and Muon Spectroscopy (NMI3) aims at a pan-European integration of the main actors within this eco-system. The NMI3 coordination effort will render public investment more efficient by harmonizing and reinforcing the services provided to the user community. It will thus directly contribute to maintaining Europes world-leading position. NMI3 is a comprehensive consortium of 18 partners from 11 different countries that includes all major providers of neutrons and muons in Europe. NMI3 exploits all tools available within I3s to realize its objectives. - Transnational Open Access will build further capacity for European users. It will foster mobility and improve the overall creation of scientific knowledge by providing the best researchers with the opportunity to use the most adapted infrastructures. - Joint Research activities will create synergies in innovative instrument development that will feed directly into improved and more efficient provision of services to the users. - Networking activities will reinforce integration by harmonizing procedures, setting standards and disseminating knowledge. Particular attention is given to train young people via the European Neutron and Muon School as well as through an e-learning platform.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-4-2014-2015 | Award Amount: 12.08M | Year: 2015

Todays society is being transformed by new materials and processes. Analytical techniques underpin their development and neutrons, with their unique properties, play a pivotal role in a multi-disciplinary, knowledge-based approach. Industry and the neutron research community must however work together more closely to enhance their innovation potential. Neutrons are only available at large scale facilities (LSFs), presenting specific challenges for outreach. National and European initiatives have combined to create a user community of almost 10000, mainly academia-based users, which is supported by an ecosystem of about 10, often world-class national facilities and the European facility, the Institute Laue Langevin. Europe leads neutron science and is investing almost 2B in the European Spallation Source (ESS), its construction, like Horizon 2020, spanning the period 2014-2020. SINE2020, world-class Science and Innovation with Neutrons in Europe in 2020, is therefore a project with two objectives; preparing Europe for the unique opportunities at ESS in 2020 and developing the innovation potential of neutron LSFs. Common services underpin the European research area for neutrons. New and improved services will be developed in SINE2020, by the LSFs and partners in 13 countries, in a holistic approach including outreach, samples, instrumentation and software. These services are the key to integrating ESS in the European neutron ecosystem, ensuring scientific success from day one. They are also the basis for facilitating direct use of neutron LSFs by industry. Particular emphasis is placed on the industry consultancy, which will reach out to industry and develop a business model for direct, industry use of LSFs in 2020, and data treatment, exploiting a game-changing opportunity at LSFs to adopt a common software approach in the production of scientific results.

Agency: Cordis | Branch: FP7 | Program: CP-CSA-Infra | Phase: INFRA-2012-1.1.24. | Award Amount: 23.40M | Year: 2013

Research accelerators are facing important challenges that must be addressed in the years to come: existing infrastructures are stretched to all performance frontiers, new world-class facilities on the ESFRI roadmap are starting or nearing completion, and strategic decisions are needed for future accelerators and major upgrades in Europe. While current projects concentrate on their specific objectives, EuCARD-2 brings a global view to accelerator research, coordinating a consortium of 40 accelerator laboratories, technology institutes, universities and industry to jointly address common challenges. By promoting complementary expertise, cross-disciplinary fertilisation and a wider sharing of knowledge and technologies throughout academia and with industry, EuCARD-2 significantly enhances multidisciplinary R&D for European accelerators. This new project will actively contribute to the development of a European Research Area in accelerator science by effectively implementing a distributed accelerator laboratory in Europe. Transnational access will be granted to state-of-the-art test facilities, and joint R&D effort will build upon and exceed that of the ongoing EuCARD project. Researchers will concentrate on a few well-focused themes with very ambitious deliverables: 20 T accelerator magnets, innovative materials for collimation of extreme beams, new high-gradient high-efficiency accelerating systems, and emerging acceleration technologies based on lasers and plasmas. EuCARD-2 will include six networks on strategic topics to reinforce synergies between communities active at all frontiers, extending the scope towards innovation and societal applications. The networks concentrate on extreme beam performance, novel accelerator concepts with outstanding potential, energy efficiency and accelerator applications in the fields of medicine, industry, environment and energy. One network will oversee the whole project to proactively catalyze links to industry and the innovation potential.

Agency: Cordis | Branch: FP7 | Program: MC-ITN | Phase: FP7-PEOPLE-2011-ITN | Award Amount: 5.94M | Year: 2011

There are more than fifteen thousand particle accelerators in the world, ranging from the linear accelerators used for cancer therapy in modern hospitals to the giant atom-smashers at international particle physics laboratories used to unlock the secrets of creation. For many decades these scientific instruments have formed one of the main pillars of modern research across scientific disciplines and countries. The optimization of the performance of any particle accelerator critically depends on an in-depth understanding of the beam dynamics in the machine, the availability of simulation tools to study and continuously improve all accelerator components from beam handling elements to rf cavities, a complete set of beam diagnostics methods to monitor all important machine and beam parameters with high precision, and a control and data acquisition system that links all the above. The oPAC consortium proposes to carry out collaborative research into all the above aspects, with the aim to optimize the performance of present and future accelerators that lie at the heart of many research infrastructures. The network brings together leading research centers, universities, and industry partners to jointly train the next generation of researchers in this interdisciplinary field. oPAC aims at developing long term collaboration and links between the involved teams across sectors and disciplinary boundaries and to thus help defining improved research and training standards in this important field.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: INFRADEV-1-2014 | Award Amount: 3.80M | Year: 2015

The Solid-State Neutron Detector SoNDe project aims to develop a high-resolution neutron detector technique that will enable the construction of position-sensitive neutron detectors for high-flux sources, such as the upcoming European Spallation Source (ESS). Moreover, by avoiding the use of 3He in this detector the 3He-shortage, which might otherwise impede the construction of such large-scale facilities, can be alleviated. The main features of the envisioned detector technique are: high-flux capacity, capable of handling the peak-flux of up-to-date spallation sources high-resolution down to 3 mm by direct imaging technique, higher resolutions available by interpolation no beam stop necessary, thus enabling investigations with direct beam intensity independence of 3He modularity, improving maintenance characteristics of todays neutron detectors Detectors of these kind will be capable of usage in a wide array of neutron instruments at facilities which use neutrons to conduct there research, among them the Institute Laue-Langevin (ILL) in France, the Maier-Leibnitz-Zentrum (MLZ, former FRMII) in Germany, Laboratoire Leon Brillion (LLB) in France and ISIS in the United Kingdom which are in operation at the moment and the upcoming ESS. At these facilities neutrons are used as a probe in a wide array of fields, ranging from material science to develop new and smart materials, chemical and biological science to develop new drugs for improved treatment of a wide range of medical conditions, magnetic studies for the development of future information storage technology to archeology, probing historical artifacts without physically destroying them. All these fields nowadays rely heavily on neutrons scattering facilities in their research and thus are in need of a reliable, high-quality neutron detection technique, which will be able to perform well at the new high-flux facilities such as ESS and simultaneously avoid the problem of 3He shortage.

Discover hidden collaborations