Time filter

Source Type

Santiago, Chile

Ertel S.,Joseph Fourier University | Marshall J.P.,Autonomous University of Madrid | Augereau J.-C.,Joseph Fourier University | Krivov A.V.,Friedrich - Schiller University of Jena | And 16 more authors.
Astronomy and Astrophysics

Context. The dust observed in debris disks is produced through collisions of larger bodies left over from the planet/planetesimal formation process. Spatially resolving these disks permits to constrain their architecture and thus that of the underlying planetary/planetesimal system. Aims. Our Herschel open time key program DUNES aims at detecting and characterizing debris disks around nearby, sun-like stars. In addition to the statistical analysis of the data, the detailed study of single objects through spatially resolving the disk and detailed modeling of the data is a main goal of the project. Methods. We obtained the first observations spatially resolving the debris disk around the sun-like star HIP 17439 (HD 23484) using the instruments PACS and SPIRE on board the Herschel Space Observatory. Simultaneous multi-wavelength modeling of these data together with ancillary data from the literature is presented. Results. A standard single component disk model fails to reproduce the major axis radial profiles at 70 μm, 100 μm, and 160 μm simultaneously. Moreover, the best-fit parameters derived from such a model suggest a very broad disk extending from few au up to few hundreds of au from the star with a nearly constant surface density which seems physically unlikely. However, the constraints from both the data and our limited theoretical investigation are not strong enough to completely rule out this model. An alternative, more plausible, and better fitting model of the system consists of two rings of dust at approx. 30 au and 90 au, respectively, while the constraints on the parameters of this model are weak due to its complexity and intrinsic degeneracies. Conclusions. The disk is probably composed of at least two components with different spatial locations (but not necessarily detached), while a single, broad disk is possible, but less likely. The two spatially well-separated rings of dust in our best-fit model suggest the presence of at least one high mass planet or several low-mass planets clearing the region between the two rings from planetesimals and dust. © 2014 ESO. Source

Crawled News Article
Site: http://phys.org/space-news/

Simulation of a gravitationally unstable circumstellar disk by means of hydrodynamic calculations. Protoplanetary 'embryo' form in the disc thanks to gravitational fragmentation. The three small pictures show the successive 'disappearance' of the lump by the star. Credit: (c) Eduard Vorobyov, Universität Wien Stars are born inside a rotating cloud of interstellar gas and dust, which contracts to stellar densities thanks to its own gravity. Before finding itself on the star, however, most of the cloud lands onto a circumstellar disk forming around the star owing to conservation of angular momentum.The manner in which the material is transported through the disk onto the star, causing the star to grow in mass, has recently become a major research topic in astrophysics. It turned out that stars may not accumulate their final mass steadily, as was previously thought, but in a series of violent events manifesting themselves as sharp stellar brightening. The young FU Orionis star in the constellation of Orion is the prototype example, which showed an increase in brightness by a factor of 250 over a time period of just one year, staying in this high-luminosity state now for almost a century. One possible mechanism that can explain these brightening events was put forward 10 years ago by Eduard Vorobyov, now working at the Astrophysical Department of the Vienna University, in collaboration with Shantanu Basu from the University of Western Ontario, Canada. According to their theory, stellar brightening can be caused by fragmentation due to gravitational instabilities in massive gaseous disks surrounding young stars, followed by migration of dense gaseous clumps onto the star. Like the process of throwing logs into a fireplace, these episodes of clump consumption release excess energy which causes the young star to brighten by a factor of hundreds to thousands. During each episode, the star is consuming the equivalent of one Earth mass every ten days. After this, it may take another several thousand years before another event occurs. Eduard Vorobyov describes the process of clump formation in circumstellar disks followed by their migration onto the star as "cannibalism on astronomical scales". These clumps could have matured into giant planets such as Jupiter, but instead they were swallowed by the parental star. This invokes an interesting analogy with the Greek mythology, wherein Cronus, the leader of the first generation of Titans, ate up his newborn children (though failing to gobble up Zeus, who finally brought death upon his father). With the advent of advanced observational instruments, such as SUBARU 8.2 meter optical-infrared telescope installed in Mauna Kea (Hawaii), it has become possible for the first time to test the model predictions. Using high-resolution, adaptive optics observations in the polarized light, an international group of astronomers led by Hauyu Liu from European Space Observatory (Garching, Germany) has verified the presence of the key features associated with the disk fragmentation model—large-scale arms and arcs surrounding four young stars undergoing luminous outbursts, including the prototype FU Orionis star itself. The results of this study were accepted for publication in Science Advances - a peer-review, open-access journal belonging to the Science publishing group. "This is a major step towards our understanding of how stars and planets form and evolve", says Vorobyov, "If we can prove that most stars undergo such episodes of brightening caused by disk gravitational instability, this would mean that our own Sun might have experienced several such episodes, implying that the giant planets of the Solar system may in fact be lucky survivors of the Sun's tempestuous past". Explore further: Modeling Jupiter and Saturn's possible origins More information: Hauyu Baobab Liu, Michihiro Takami, Tomoyuki Kudo, Jun Hashimoto, Ruobing Dong, Eduard I. Vorobyov, Tae-Soo Pyo, Misato Fukagawa, Motohide Tamura, Thomas Henning, Michael M. Dunham, Jennifer Karr, Nobuhiko Kusakabe, Toru Tsuribe: "Circumstellar Disks of the Most Vigorously Accreting Young Stars", published online February 5, 2016. advances.sciencemag.org/content/2/2/e1500875

Robson E.I.,United Kingdom Astronomy Technology Center | Ivison R.J.,European Space Observatory | Ivison R.J.,University of Edinburgh | Smail I.,Durham University | And 26 more authors.
Astrophysical Journal

We describe a search for submillimeter emission in the vicinity of one of the most distant, luminous galaxies known, HerMES FLS3, at z = 6.34, exploiting it as a signpost to a potentially biased region of the early universe, as might be expected in hierarchical structure formation models. Imaging to the confusion limit with the innovative, wide-field submillimeter bolometer camera, SCUBA-2, we are sensitive to colder and/or less luminous galaxies in the surroundings of HFLS3. We use the Millennium Simulation to illustrate that HFLS3 may be expected to have companions if it is as massive as claimed, but find no significant evidence from the surface density of SCUBA-2 galaxies in its vicinity, or their colors, that HFLS3 marks an overdensity of dusty, star-forming galaxies. We cannot rule out the presence of dusty neighbors with confidence, but deeper 450 μm imaging has the potential to more tightly constrain the redshifts of nearby galaxies, at least one of which likely lies at z ≳ 5. If associations with HFLS3 can be ruled out, this could be taken as evidence that HFLS3 is less biased than a simple extrapolation of the Millennium Simulation may imply. This could suggest either that it represents a rare short-lived, but highly luminous, phase in the evolution of an otherwise typical galaxy, or that this system has suffered amplification due to a foreground gravitational lens and so is not as intrinsically luminous as claimed. © 2014 The American Astronomical Society. All rights reserved. Source

Eiroa C.,Autonomous University of Madrid | Marshall J.P.,Autonomous University of Madrid | Mora A.,ESA ESAC Gaia SOC | Krivov A.V.,Friedrich - Schiller University of Jena | And 25 more authors.
Astronomy and Astrophysics

We present Herschel PACS 100 and 160 μm observations of the solar-type stars α Men, HD 88230 and HD 210277, which form part of the FGK stars sample of the Herschel open time key programme (OTKP) DUNES (DUst around NEarby S tars). Our observations show small infrared excesses at 160 μm for all three stars. HD 210277 also shows a small excess at 100 μm, while the 100 μm fluxes of α Men and HD 88230 agree with the stellar photospheric predictions. We attribute these infrared excesses to a new class of cold, faint debris discs. Both ? Men and HD 88230 are spatially resolved in the PACS 160 μm images, while HD 210277 is point-like at that wavelength. The projected linear sizes of the extended emission lie in the range from ∼115 to ≤250 AU. The estimated black body temperatures from the 100 and 160 ?m fluxes are ≈22 K, and the fractional luminosity of the cold dust is L dust/Lz.ast ∼ 10?6, close to the luminosity of the solar-system's Kuiper belt. These debris discs are the coldest and faintest discs discovered so far around mature stars, so they cannot be explained easily invoking "classical" debris disc models. © 2011 ESO. Source

Eiroa C.,Autonomous University of Madrid | Marshall J.P.,Autonomous University of Madrid | Mora A.,ESA ESAC Gaia SOC | Montesinos B.,CSIC - National Institute of Aerospace Technology | And 49 more authors.
Astronomy and Astrophysics

Context. Debris discs are a consequence of the planet formation process and constitute the fingerprints of planetesimal systems. Their solar system counterparts are the asteroid and Edgeworth-Kuiper belts. Aims. The DUNES survey aims at detecting extra-solar analogues to the Edgeworth-Kuiper belt around solar-type stars, putting in this way the solar system into context. The survey allows us to address some questions related to the prevalence and properties of planetesimal systems. Methods. We used Herschel/PACS to observe a sample of nearby FGK stars. Data at 100 and 160 μm were obtained, complemented in some cases with observations at 70 μm, and at 250, 350 and 500 μm using SPIRE. The observing strategy was to integrate as deep as possible at 100 μm to detect the stellar photosphere. Results. Debris discs have been detected at a fractional luminosity level down to several times that of the Edgeworth-Kuiper belt. The incidence rate of discs around the DUNES stars is increased from a rate of ~12.1% ± 5% before Herschel to ~20.2% ± 2%. A significant fraction (~52%) of the discs are resolved, which represents an enormous step ahead from the previously known resolved discs. Some stars are associated with faint far-IR excesses attributed to a new class of cold discs. Although it cannot be excluded that these excesses are produced by coincidental alignment of background galaxies, statistical arguments suggest that at least some of them are true debris discs. Some discs display peculiar SEDs with spectral indexes in the 70-160 μm range steeper than the Rayleigh-Jeans one. An analysis of the debris disc parameters suggests that a decrease might exist of the mean black body radius from the F-type to the K-type stars. In addition, a weak trend is suggested for a correlation of disc sizes and an anticorrelation of disc temperatures with the stellar age. © 2013 ESO. Source

Discover hidden collaborations