Time filter

Source Type

Nathwani S.-M.,Trinity College Dublin | Butler S.,Trinity College Dublin | Fayne D.,Trinity College Dublin | McGovern N.N.,Trinity College Dublin | And 8 more authors.
Cancer Chemotherapy and Pharmacology | Year: 2010

Purpose: The development of multi-drug resistance (MDR) due to the expression of members of the ATP binding cassette (ABC) transporter family is a major obstacle in cancer treatment. The broad range of substrate specificities associated with these transporters leads to the efflux of many anti-cancer drugs from tumour cells. Therefore, the development of new chemotherapeutic agents that are not substrates of these transporters is important. We have recently demonstrated that some members of a novel series of pyrrolo-1,5-benzoxazepine (PBOX) compounds are microtubule-depolymerising agents that potently induce apoptosis in several cancer cell lines and impair growth of mouse breast tumours. The aim of this current study was to establish whether PBOXs were capable of inducing apoptosis in cancer cells expressing either P-glycoprotein or breast cancer resistance protein (BCRP), two of the main ABC transporters associated with MDR. Methods: We performed in vitro studies to assess the effects of PBOXs on cell proliferation, cell cycle and apoptosis in human cancer cell lines and their drug-resistant substrains expressing either P-glycoprotein or BCRP. In addition, we performed a preliminary molecular docking study to examine interactions between PBOXs and P-glycoprotein. Results: We established that three representative PBOXs, PBOX-6,-15 and-16 were capable of inducing apoptosis in drug-resistant HL60-MDR1 cells (expressing P-glycoprotein) and HL60-ABCG2 cells (expressing BCRP) with similar potencies as in parental human promyelocytic leukaemia HL60 cells. Likewise, resistance to PBOX-6 and-16 was not evident in P-glycoprotein-expressing A2780-ADR cells in comparison with parent human ovarian carcinoma A2780 cells. Finally, we deduced by molecular docking that PBOX-6 is not likely to form favourable interactions with the substrate binding site of P-glycoprotein. Conclusion: Our results suggest that pro-apoptotic PBOX compounds may be potential candidates for the treatment of P-glycoprotein-or BCRP-associated MDR cancers. © Springer-Verlag 2009.

Nathwani S.-M.,Trinity College Dublin | Cloonan S.M.,Trinity College Dublin | Stronach M.,Trinity College Dublin | Campiani G.,European Research Center for Drug Discovery and Development | And 4 more authors.
Oncology Reports | Year: 2010

Advanced hormone-refractory prostate cancer is associated with poor prognosis and limited treatment options. Members of the pyrrolo-1,5- benzoxazepine (PBOX) family of compounds exhibit anti-cancer properties in cancer cell lines (including multi-drug resistant cells), ex vivo patient samples and in vivo mouse tumour models with minimal toxicity to normal cells. Recently, they have also been found to possess anti-angiogenic properties in vitro. However, both the apoptotic pathways and the overall extent of the apoptotic response induced by PBOX compounds tend to be cell-type specific. Since the effect of the PBOX compounds on prostate cancer has not yet been elucidated, the purpose of this study was to investigate if PBOX compounds induce antiproliferative effects on hormone-refractory prostate cancer cells. We examined the effect of two representative PBOX compounds, PBOX-6 and PBOX-15, on the androgen-independent human prostate adenocarcinoma cell line, PC3. PBOX-6 and -15 displayed anti-proliferative effects on PC3 cells, mediated initially through a sustained G2/M arrest. G2/M arrest, illustrated as DNA tetraploidy, was accompanied by microtubule depolymerisation and phosphorylation of antiapoptotic proteins Bcl-2 and Bcl-xL and the mitotic spindle checkpoint protein BubR1. Phosphorylation of BubR1 is indicative of an active mitotic checkpoint and results in maintenance of cell cycle arrest. G2/M arrest was followed by apoptosis illustrated by DNA hypoploidy and PARP cleavage and was accompanied by degradation of BubR1, Bcl-2 and Bcl-xL. Furthermore, sequential treatment with the CDK1-inhibitor, flavopiridol, synergistically enhanced PBOXinduced apoptosis. In summary, this in vitro study indicates that PBOX compounds may be useful alone or in combination with other agents in the treatment of hormone-refractory prostate cancer.

Greene L.M.,Trinity College Dublin | Nolan D.P.,Trinity College Dublin | Regan-Komito D.,Trinity College Dublin | Campiani G.,European Research Center for Drug Discovery and Development | And 2 more authors.
International Journal of Oncology | Year: 2013

The pyrrolo-1,5-benzoxazepines (PBOXs) are a novel group of selective apoptotic agents displaying promising therapeutic potential in both ex vivo chemotherapy-refractory patient samples and in vivo murine carcinoma models. In this report, we present novel data concerning the induction of autophagy by the PBOXs in adenocarcinoma-derived colon cancer cells. Autophagy is a lysosome-dependent degradative pathway recently associated with chemotherapy. However, whether autophagy facilitates cell survival in response to chemotherapy or contributes to chemotherapy-induced cell death is highly controversial. Autophagy was identified by enhanced expression of LC3B-II, an autophagosome marker, an increase in the formation of acridine orange-stained cells, indicative of increased vesicle formation and electron microscopic confirmation of autophagic structures. The vacuolar H+ ATPase inhibitor bafilomycin-A1 (BAF-A1) inhibited vesicle formation and enhanced the apoptotic potential of PBOX-6. These findings suggest a cytoprotective role of autophagy in these cells following prolonged exposure to PBOX-6. Furthermore, BAF-A1 and PBOX-6 interactions were determined to be synergistic and caspase-dependent. Potentiation of PBOX-6-induced apoptosis by BAF-A1 was associated with a decrease in the levels of the anti-apoptotic protein, Mcl-1. The data provide evidence that autophagy functions as a survival mechanism in colon cancer cells to PBOX-6-induced apoptosis and a rationale for the use of autophagy inhibitors to further enhance PBOX-6-induced apoptosis in colon cancer.

Loading European Research Center for Drug Discovery and Development collaborators
Loading European Research Center for Drug Discovery and Development collaborators