Time filter

Source Type

Tamburro M.,University of Molise | Sammarco M.L.,University of Molise | Ammendolia M.G.,Istituto Superiore di Sanita | Fanelli I.,University of Molise | And 2 more authors.
FEMS Microbiology Letters | Year: 2015

Listeria monocytogenes virulence depends on the activity of well-characterized virulence factors. In this study, transcription levels of inlA, inlB, hly, bsh and prfA genes in L. monocytogenes strains, and the ability of invasion into CaCo-2 cells were investigated. Serotyping, multiplex-PCR for serovar identification and restriction fragment analysis of inlA were performed. Transcription levels and invasiveness were evaluated by quantitative reverse-transcription PCR and by in vitro assays, respectively. The isolates were of serovars 1/2a, 4b, 1/2c, 1/2b and 3a. Full-length inlA profiles were found for nine of ten clinical isolates, while five of seven cultures from foods showed truncated profile. The analysis of transcription levels of virulence factors encoding genes demonstrated a substantial inter-strain heterogeneity, with clinical strains showing higher levels for almost all genes than isolates from food. A correlation between transcription levels of inlA and inlB, as well as between bsh and prfA, was observed. Significant differences between clinical strains and food isolates in the invasion of CaCo-2 cells were found. Analysis of gene transcription and invasiveness of human cells suggests different virulence phenotypes among L. monocytogenes populations, and this characterization could be a useful tool for risk assessment purposes and for the development of public health strategies. © FEMS 2015. All rights reserved. Source

Kagkli D.-M.,European Commission - Joint Research Center Ispra | Weber T.P.,European Commission - Joint Research Center Ispra | Van den Bulcke M.,European Commission - Joint Research Center Ispra | Folloni S.,European Commission - Joint Research Center Ispra | And 5 more authors.
Applied and Environmental Microbiology | Year: 2011

European Commission regulation 2073/2005 on the microbiological criteria for food requires that Escherichia coli is monitored as an indicator of hygienic conditions. Since verocytotoxigenic E. coli (VTEC) strains often cause food-borne infections by the consumption of raw food, the Biological Hazards (BIOHAZ) panel of the European Food Safety Authority (EFSA) recommended their monitoring in food as well. In particular, VTEC strains belonging to serogroups such as O26, O103, O111, O145, and O157 are known causative agents of several human outbreaks. Eight real-time PCR methods for the detection of E. coli toxin genes and their variants (stx 1, stx 2), the intimin gene (eae), and five serogroup-specific genes have been proposed by the European Reference Laboratory for VTEC (EURL-VTEC) as a technical specification to the European Normalization Committee (CEN TC275/WG6). Here we applied a "modular approach" to the in-house validation of these PCR methods. The modular approach subdivides an analytical process into separate parts called "modules," which are independently validated based on method performance criteria for a limited set of critical parameters. For the VTEC real-time PCR module, the following parameters are being assessed: specificity, dynamic range, PCR efficiency, and limit of detection (LOD). This study describes the modular approach for the validation of PCR methods to be used in food microbiology, using single-target plasmids as positive controls and showing their applicability with food matrices. © 2011, American Society for Microbiology. Source

Michelacci V.,European Reference Laboratory for Escherichia coli | Orsini M.,Istituto Zooprofilattico Sperimentale dellAbruzzo e Del Molise G. Caporale | Knijn A.,Servizio Informatico | Delannoy S.,University Paris Est Creteil | And 3 more authors.
Frontiers in Microbiology | Year: 2016

Shiga-toxin producing Escherichia coli (STEC) strains possess a large accessory genome composed of virulence genes existing in multiple allelic variants, which sometimes segregate with specific STEC subpopulations. We analyzed the allelic variability of 91 virulence genes of STEC by Real Time PCR followed by melting curves analysis in 713 E. coli strains including 358 STEC. The 91 genes investigated were located on the locus of enterocyte effacement (LEE), OI-57, and OI-122 pathogenicity islands and displayed a total of 476 alleles in the study population. The combinations of the 91 alleles of each strain were termed allelic signatures and used to perform cluster analyses. We termed such an approach High Resolution Virulence Allelic Profiling (HReVAP) and used it to investigate the phylogeny of STEC of multiple serogroups. The dendrograms obtained identified groups of STEC segregating approximately with the serogroups and allowed the identification of subpopulations within the single groups. The study of the allelic signatures provided further evidence of the coevolution of the LEE and OI-122, reflecting the occurrence of their acquisition through a single event. The HReVAP analysis represents a sensitive tool for studying the evolution of LEE-positive STEC. © 2016 Michelacci, Orsini, Knijn, Delannoy, Fach, Caprioli and Morabito. Source

Michelacci V.,European Reference Laboratory for Escherichia coli | Michelacci V.,Third University of Rome | Tozzoli R.,European Reference Laboratory for Escherichia coli | Caprioli A.,European Reference Laboratory for Escherichia coli | And 5 more authors.
Clinical Microbiology and Infection | Year: 2013

Subtilase (SubAB) is a cytotoxin elaborated by some Shiga Toxin (Stx)-producing Escherichia coli (STEC) strains usually lacking the locus of enterocyte effacement (LEE). Two variants of SubAB coding genes have been described: subAB1, located on the plasmid of the STEC O113 98NK2 strain, and subAB2, located on a pathogenicity island (PAI) together with the tia gene, encoding an invasion determinant described in enterotoxigenic E. coli. In the present study, we determined the entire nucleotide sequence of the PAI containing the subAB2 operon, termed Subtilase-Encoding PAI (SE-PAI), and identified its integration site in the pheV tRNA locus. In addition, a PCR strategy for discriminating the two subAB allelic variants was developed and used to investigate their presence in E. coli strains belonging to different pathotypes and in a large collection of LEE-negative STEC of human and ovine origin. The results confirmed that subAB genes are carried predominantly by STEC and showed their presence in 72% and 86% of the LEE-negative strains from human cases of diarrhoea and from healthy sheep respectively. Most of the subAB-positive strains (98%) identified possessed the subAB2 allelic variant and were also positive for tia, suggesting the presence of SE-PAI. Altogether, our observations indicate that subAB2 is the prevalent SubAB-coding operon in LEE-negative STEC circulating in European countries, and that sheep may represent an important reservoir for human infections with these strains. Further studies are needed to assess the role of tia and/or other genes carried by SE-PAI in the colonization of the host intestinal mucosa. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases. Source

Tozzoli R.,European Reference Laboratory for Escherichia coli | Grande L.,European Reference Laboratory for Escherichia coli | Michelacci V.,European Reference Laboratory for Escherichia coli | Ranieri P.,European Reference Laboratory for Escherichia coli | And 3 more authors.
Frontiers in cellular and infection microbiology | Year: 2014

Shiga toxin (Stx)-producing Escherichia coli (STEC) are pathogenic E. coli causing diarrhea, hemorrhagic colitis (HC) and hemolytic uremic syndrome (HUS). STEC are characterized by a constellation of virulence factors additional to Stx and have long been regarded as capable to cause HC and HUS when possessing the ability of inducing the attaching and effacing (A/E) lesion to the enterocyte, although strains isolated from such severe infections sometimes lack this virulence feature. Interestingly, the capability to cause the A/E lesion is shared with another E. coli pathogroup, the Enteropathogenic E. coli (EPEC). In the very recent times, a different type of STEC broke the scene causing a shift in the paradigm for HUS-associated STEC. In 2011, a STEC O104:H4 caused a large outbreak with more than 800 HUS and 50 deaths. Such a strain presented the adhesion determinants of Enteroaggregative E. coli (EAggEC). We investigated the possibility that, besides STEC and EAggEC, other pathogenic E. coli could be susceptible to infection with stx-phages. A panel of stx2-phages obtained from STEC isolated from human disease was used to infect experimentally E. coli strains representing all the known pathogenic types, including both diarrheagenic E. coli (DEC) and extra-intestinal pathogenic E. coli (ExPEC). We observed that all the E. coli pathogroups used in the infection experiments were susceptible to the infection. Our results suggest that the stx2-phages used may not have specificity for E. coli adapted to the intestinal environment, at least in the conditions used. Additionally, we could only observe transient lysogens suggesting that the event of stable stx2-phage acquisition occurs rarely. Source

Discover hidden collaborations