Time filter

Source Type

News Article | March 7, 2013
Site: www.finsmes.com

Backers included Andreessen Horowitz, XSeed Capital, Ariel Polar, Rothenberg Ventures and Mark Gorenberg. In addition to the funding, the company added Sharon Goldstein as Chief Marketing Officer. Led by Kyle Wong, co-founder and CEO, Pixlee provides brands and agencies with a platform to create, manage and measure user-generated photo and short form video campaigns. Pixlee offers the ability to surface the best photos and videos among millions of pieces of brand-affiliated content uploaded by consumers daily. Customers include: – lifestyle and ecommerce companies such as 1-800-Flowers, Sanuk (a Decker’s brand) and One Kings Lane, – brands and travel destinations like Yamaha and Whistler Blackcomb, and – sports franchises such as one-third of the National Basketball Association, the Seattle Sounders, and one-fourth of the National Football League.

News Article | August 18, 2009
Site: www.xconomy.com

Vancouver, WA-based ClearAccess, a broadband device management and data services company, is announcing today that it has closed a Series B financing, raising a little over $6 million. The financing was led by Blade Ventures, Buerk Dale Victor, and DFJ Frontier. ClearAccess developed the ClearVision management system, allowing service providers to remotely manage residential and small business gateways through the Internet. This enables service providers to give services to customers they might not otherwise have. “Examples include content filtering which enables parents to protect family members from harmful websites, and Internet time blocking which can limit when any device on the home network—including gaming consoles—can access the Internet,” said ClearAccess CEO Ken Hood in an e-mail interview. ClearAccess also sells DSL and Ethernet gateways. “Part of the Series B investment will be used to fund the development of innovative data services that service providers can deploy remotely using the ClearVision Management System,” Hood said. “The remaining portion will be used to increase the reach of our sales and marketing efforts.” ClearAccess already has more than 40 service providers as customers, with another 35 on a trial basis. “In terms of the ecosystem, we play a very central role and have well established partnerships with the leading access equipment vendors, CPE [customer premises equipment] manufacturers, and home networking companies,” Hood said. Eric Hal Schwartz was an intern in Xconomy's Seattle office. Follow @

The ATLAS detector in the Large Hadron Collider picked up this jet of particles (yellow and green bars) when protons collided at energies of 13 TeV. When you're searching high and low for your lost keys, sometimes the places where you don't see them can help you narrow down where they might be. In science, the search for new physics often takes a similar path. In December 2015, scientists at the Large Hadron Collider (LHC) — the world's largest particle accelerator — thought they may have seen a hint of a brand-new particle, and with it, a window into physics beyond what scientists know now. But the findings turned out to be ghosts, a statistical fluke. Yet despite the negative result, the fact that there is nothing there shows that reigning theories of particle physics are working remarkably well, experts said. But that result only deepens the mysteries physicists are trying to solve, and pushes them to find out just where new particles or forces could be hiding. [The 9 Biggest Unsolved Mysteries in Physics] "The bad news is [the measurements] don't show anything," said theoretical physicist Matt Strassler. "The good news is that it did a really good job of not showing anything." Strassler himself recently gave a talk at the European Organization for Nuclear Research (CERN), which runs the LHC, on what can be learned from such results, or lack thereof. "It's like if you squint trying to see something — sometimes you'll see something, and sometimes it will be an illusion," Strassler told Live Science. The LHC uses about 9,600 massive magnets to circulate streams of protons within a 17-mile-long (27 kilometers) ring. These protons are accelerated to near the speed of light and then smashed together. The resulting collisions unleash cascades of subatomic particles and radiation that can provide clues about the building blocks of matter. After a two-year hiatus for upgrades, the LHC was fired up again last year, this time running at higher energies. What scientists found in December was that two detection systems, one called ATLAS and the other called CMS, found a curious bump in the plots of energy versus "events." (Events are essentially detections of photons or particles.) The bump was large enough that it looked interesting to scientists. If real, it could have been evidence of a particle nobody has seen before at energies of 750 billion electron volts (GeV). During the LHC's current run, it can reach energies of almost 13 trillion electron volts (TeV). When smashed together, the energy the protons carry will turn into particles, each with a characteristic energy. Most of these particles are short-lived, though, and decay into other particles and photons. For this reason, particle detections are often indirect. This is what happened in 2012, when scientists discovered the Higgs boson, the elementary particle that is thought to explain how other particles get their mass. And this is why the most recent bump was so intriguing. But now, new data from CMS, collected since December, shows that the 750 GeV bump was likely an illusion — a statistical artifact of the kind that sometimes crops up in experiments like this, said Michael Peskin, a theoretical physicist at the SLAC National Accelerator Laboratory. [Beyond Higgs: 5 Elusive Particles That May Lurk in the Universe] Even back in December, some physicists — Peskin among them — had doubts. He noted the teams working on the LHC issued a statement that said, effectively, they weren't issuing one. "The statement said the statistical significance was too low to report an observation," Peskin said. But that doesn't mean it's a useless result, Strassler said. Nor does it mean the spate of papers theorizing about what the observation could be are just wrong and not worthy of consideration, he added. Such work can often yield important insights down the road. "This process of being sure nothing has been missed is going to take longer than discovering something," he said. "Sometimes things at 750 GeV might be relevant for a particle 10 times smaller that hasn't been discovered yet." Negative results like this are also important because they show just where the conceptual problems with current theories might lie. In this case, the theory is the Standard Model, the reigning theory in physics that describes the bevy of subatomic particles that make up the universe. [Wacky Physics: The Coolest Little Particles in Nature] But phenomena such as dark matter, the invisible stuff that is thought to make up 85 percent of the matter in the universe, suggest that the Standard Model isn't complete. And physicists and cosmologists have a difficult time explaining why the universe is dominated by matter rather than antimatter, or why the Higgs field that gives things mass is the strength that it is. "For the Higgs boson, we end up having to say, 'That's the way it is,'" Peskin said. "And I don't like having to say that." There has to be a reason, he added, that the Higgs field looks the way it does, and the Standard Model by itself doesn't really provide the answer. This is where negative results can be useful. For example, there are many extensions to the Standard Model that propose something called supersymmetry, or SUSY. These theories say that every particle has a yet-to-be-discovered partner particle. The existence of such partners would help physicists understand why the Higgs boson has the value it does (and it predicts that there is a supersymmetric partner to the Higgs, as well). Over the years, negative results have helped narrow down the SUSY models that work, Peskin said. "Basically every SUSY model on the table in the mid-2000s is now excluded," he said. This doesn't mean SUSY is wrong, but it helps researchers focus the theoretical work. The history of science records a number of negative results that led to greater insights. In 1887, Albert Michelson and Edward Morley conducted an experiment to find the aether, a proposed medium that was thought to carry light waves. If the aether existed, the speed of light should have changed depending on the direction of the beam. It didn't, and years later, Albert Einstein used that negative result as part of the formulation of his theory of relativity, which says it is space-time itself that changes in order to keep the speed of light the same in all reference frames. [8 Ways You Can See Einstein's Theory of Relativity in Real Life] The issue was the way people conceived of light waves. "Maybe [light] waves were different from other waves we knew about," Strassler said, in that they didn't need a medium to travel through. Strassler noted that nobody has made this kind of fundamental leap yet. In the case of Michelson-Morley, for instance, it was realizing that light waves don't need a medium. For particle physicists, it's not even clear what the insight has to be. It's possible the problem is technical and scientists just need better accelerators and detectors to find new particles. Or it could be conceptual, as it was for Michelson and Morley, Strassler said. Some physicists say the negative result likely won't have any significance beyond just being a statistical ghost. "We know that the Standard Model is not a complete theory, and that it has to be extended at some energy scale. But, theoretically, there are millions of possible extensions, and we need a clue from experiment which is the correct one," said Adam Falkowski, a theoretical particle physicist at the Centre National de la Recherche Scientifique (CNRS) in Paris, and co-author of a paper describing the implications of the 750 GeV bump being a real effect.   Still, the result could help in some ways, said Nhan Tran, a postdoctoral research fellow at the Fermi National Accelerator Laboratory in Illinois."It contributes to our knowledge of what's not there," he said. "Helping us focus on where we should be looking." For his part, Peskin said he thinks the comparison between current experiments at the LHC and early work to find the proposed aether is a bit overstated. "Michelson [and] Morely blew away the previous theory," he said. The Standard Model is on firmer ground, he said. However, he added that results like this one make him less confident about ideas like SUSY. "On Tuesdays, Thursdays and Saturdays, I believe in it," he said. "On other days, I think it could be anything." At the same time, the LHC is a powerful new tool, Peskin said. "Our ability to detect SUSY particles is a lot more powerful," he said. "If you believe they are there, it might turn up in the next year." Copyright 2016 LiveScience, a Purch company. All rights reserved. This material may not be published, broadcast, rewritten or redistributed.

News Article | August 22, 2016
Site: phys.org

The European Organization for Nuclear Research (CERN) has launched an investigation into a video filmed at night on its Geneva campus depicting a mock ritual human sacrifice, a spokeswoman said Wednesday.

China could soon rival Europe and the U.S. as a global leader in the field of particle physics. The world's most populous country now also aims to build the world's most powerful supercollider to have a better understanding of the Higgs boson, the so-called god-particle. China plans an investment of $6 billion to build the facility, which will be at least twice the size of the Large Hadron Collider (LHC) of the European Organization for Nuclear Research (CERN) in Switzerland. The LHC is currently the world's largest and most powerful particle collider. The blueprint for the project dubbed the "Higgs Factory" was drafted in 2014 by researchers at China's Institute of High Energy Physics (IHEP). The supercollider will be an underground facility that will smash subatomic particles at enormous speeds so as to generate millions of Higgs boson particles, which scientists believe is one of the fundamental blocks of the universe. The Higgs boson particle was discovered in 2012 by scientists who used CERN's LHC to smash high-energy proton beams at nearly the speed of light. Despite its enormous size and power, the LHC has limitations. IHEP director Wang Yifang said that the accelerator may not be capable of generating large quantities of the Higgs boson particles needed to support further studies. Wang said China's particle accelerator could offer a step closer to unraveling the mysteries of the universe as it will operate at about seven times the energy level of CERN's collider. Compared to the LHC, which lies in a tunnel 27 kilometers in circumference and 175 meters beneath the France-Switzerland border, the Chinese supercollider will lie in a massive underground ring measuring more than 50 kilometers in circumference. Qinhuangdao, a northern port city in China, is being considered for the location of the facility given its favorable geological conditions. Wang said China's version of LHC will be capable of producing large quantities of Higgs boson particles and this may help recreate the conditions following the Big Bang, which could shed light on the origins of universe and matter. The central government has yet to give approval to the plan, but scientists are optimistic that the research needed to construct the facility can begin as early as late 2016. Construction is anticipated to start by 2021. © 2016 Tech Times, All rights reserved. Do not reproduce without permission.

Discover hidden collaborations