Entity

Time filter

Source Type

Ibbenbüren, Germany

Werner S.,University of Hamburg | Stamm H.,University of Hamburg | Pandjaitan M.,University of Hamburg | Kemming D.,European Laboratory Association | And 5 more authors.
BMC Cancer | Year: 2015

Background: Disseminated tumor cells (DTCs) can be detected using ultrasensitive immunocytochemical assays and their presence in the bone marrow can predict the subsequent occurrence of overt metastasis formation and metastatic relapse. Using expression profiling on early stage primary breast tumors, low IRX2 expression was previously shown to be associated with the presence of DTCs in the bone marrow, suggesting a possible role of IRX2 in the early steps of metastasis formation. The purpose of this study is to gain insights into the significance of IRX2 protein function in the progression of breast cancer. Methods: To assess the physiological relevance of IRX2 in breast cancer, we evaluated IRX2 expression in a large breast cancer cohort (n = 1992). Additionally, constitutive IRX2 over expression was established in BT-549 and Hs578T breast cancer cell lines. Subsequently we analyzed whether IRX2 overexpression effects chemokine secretion and cellular motility of these cells. Results: Low IRX2 mRNA expression was found to correlate with high tumor grade, positive lymph node status, negative hormone receptor status, and basal type of primary breast tumors. Also in cell lines low IRX2 expression was associated with mainly basal breast cancer cell lines. The functional studies show that overexpression of the IRX2 transcription factor in basal cell lines suppressed secretion of the pro-metastatic chemokines and inhibited cellular motility but did not influence cell proliferation. Conclusion: Our results imply that the IRX2 transcription factor might represent a novel metastasis associated protein that acts as a negative regulator of cellular motility and as a repressor of chemokine expression. Loss of IRX2 expression could therefore contribute to early hematogenous dissemination of breast cancer by sustaining chemokine secretion and enabling mobilization of tumor cells. © 2015 Werner et al. Source


Wrage M.,University of Hamburg | Hagmann W.,German Cancer Research Center | Kemming D.,European Laboratory Association | Uzunoglu F.G.,University of Hamburg | And 15 more authors.
International Journal of Cancer | Year: 2015

For better lung cancer diagnosis and therapy, early detection markers of tumor dissemination are urgently needed, as most lung cancers do not show symptoms until extensive metastasis formation has already taken place. Our previous studies showed that in non-small cell lung cancer (NSCLC) early tumor dissemination is associated with a loss of chromosome 4q12-q32 and the presence of disseminated tumor cells (DTC) in the bone marrow. In order to identify the potential target gene in this region, a screen for methylation-dependent expression was performed. Lung cancer cell lines showing a loss of 4q as well as a normal bronchial epithelial cell line as control were treated with 5-aza-2'-deoxycytidine (5-aza-CdR) followed by expression profiling. Seven genes within the 4q target region, which have been associated with a positive DTC status before were found to be regulated by hypermethylation. QRT-PCR in an independent sample set identified HERC5 as a potential target gene. Quantitative methylation analysis of these lung tissue samples revealed that HERC5 promoter hypermethylation was significantly associated with positive DTC status (p = 0.020) and occurrence of brain metastases (p = 0.015). In addition, hypermethylation of the HERC5 promoter in NSCLC was identified as a predictor for poor survival for Stage I adenocarcinoma patients (p = 0.022) and also for poor overall survival in metastatic lung cancer patients (p = 0.028). In conclusion, HERC5 may function as a prognostic marker and is associated with tumor dissemination in lung cancer. © 2014 UICC. Source


Wikman H.,University of Hamburg | Westphal L.,University of Hamburg | Schmid F.,University of Hamburg | Schmid F.,Max Delbruck Center for Molecular Medicine | And 16 more authors.
Oncotarget | Year: 2014

Breast cancer brain metastases (BCBM) are detected with increasing incidence. In order to detect potential genes involved in BCBM, we first screened for genes down-regulated by methylation in cell lines with site-specific metastatic ability. The expression of five genes, CADM1, SPARC, RECK, TNFAIP3 and CXCL14, which were also found down-regulated in gene expression profiling analyses of BCBM tissue samples, was verified by qRT-PCR in a larger patient cohort. CADM1 was chosen for further down-stream analyses. A higher incidence of CADM1 methylation, correlating with lower expression levels, was found in BCBM as compared to primary BC. Loss of CADM1 protein expression was detected most commonly among BCBM samples as well as among primary tumors with subsequent brain relapse. The prognostic role of CADM1 expression was finally verified in four large independent breast cancer cohorts (n=2136). Loss of CADM1 protein expression was associated with disease stage, lymph node status, and tumor size in primary BC. Furthermore, all analyses revealed a significant association between loss of CADM1 and shorter survival. In multivariate analyses, survival was significantly shorter among patients with CADM1-negative tumors. Loss of CADM1 expression is an independent prognostic factor especially associated with the development of brain metastases in breast cancer patients. © 2008-2014 Impact Journals, LLC. Source


Hannemann J.,University of Hamburg | Meyer-Staeckling S.,University of Hamburg | Kemming D.,University of Hamburg | Kemming D.,European Laboratory Association | And 11 more authors.
PLoS ONE | Year: 2011

During cancer progression, specific genomic aberrations arise that can determine the scope of the disease and can be used as predictive or prognostic markers. The detection of specific gene amplifications or deletions in single blood-borne or disseminated tumour cells that may give rise to the development of metastases is of great clinical interest but technically challenging. In this study, we present a method for quantitative high-resolution genomic analysis of single cells. Cells were isolated under permanent microscopic control followed by high-fidelity whole genome amplification and subsequent analyses by fine tiling array-CGH and qPCR. The assay was applied to single breast cancer cells to analyze the chromosomal region centred by the therapeutical relevant EGFR gene. This method allows precise quantitative analysis of copy number variations in single cell diagnostics. © 2011 Hannemann et al. Source

Discover hidden collaborations