Time filter

Source Type

Citro S.,European Institute of Oncology at the IFOM IEO Campus
Frontiers in bioscience (Scholar edition)

Although sharing a common conjugation pathway, SUMO1, SUMO2/3 and SUMO4 seem to play preferential roles in the cell. Recently, many regulatory mechanisms contributing to SUMO paralogs specific modification have emerged. SUMO enzymes can discriminate between SUMO paralogs at both conjugation and deconjugation levels. Moreover, many substrates possess characteristics that promote their preference for different SUMO family members. A better knowledge of the mechanisms promoting SUMO specific modification will improve our understanding of the functions of SUMO paralogs in distinct cellular pathways. Source

Campaner S.,European Institute of Oncology at the IFOM IEO Campus | Spreafico F.,European Institute of Oncology at the IFOM IEO Campus | Burgold T.,European Institute of Oncology at the IFOM IEO Campus | Doni M.,European Institute of Oncology at the IFOM IEO Campus | And 4 more authors.
Molecular Cell

p53 is the central regulator of cell fate following genotoxic stress and oncogene activation. Its activity is controlled by several posttranslational modifications. Originally defined as a critical layer of p53 regulation in human cell lines, p53 lysine methylation by Set7/9 (also called Setd7) was proposed to fulfill a similar function in vivo in the mouse, promoting p53 acetylation, stabilization, and activation upon DNA damage (Kurash et al., 2008). We tested the physiological relevance of this circuit in an independent Set7/9 knockout mouse strain. Deletion of Set7/9 had no effect on p53-dependent cell-cycle arrest or apoptosis following sublethal or lethal DNA damage induced by radiation or genotoxic agents. Set7/9 was also dispensable for p53 acetylation following irradiation. c- myc oncogene-induced apoptosis was also independent of Set7/9, and analysis of p53 target genes showed that Set7/9 is not required for the p53-dependent gene expression program. Our data indicate that Set7/9 is dispensable for p53 function in the mouse. © 2011 Elsevier Inc. Source

Discover hidden collaborations