European Center for Brain Research

Santa Lucia di Serino, Italy

European Center for Brain Research

Santa Lucia di Serino, Italy

Time filter

Source Type

MacCarrone M.,Biomedical University of Rome | MacCarrone M.,European Center for Brain Research | Guzman M.,Complutense University of Madrid | MacKie K.,Indiana University | And 3 more authors.
Nature Reviews Neuroscience | Year: 2014

Among the many signalling lipids, endocannabinoids are increasingly recognized for their important roles in neuronal and glial development. Recent experimental evidence suggests that, during neuronal differentiation, endocannabinoid signalling undergoes a fundamental switch from the prenatal determination of cell fate to the homeostatic regulation of synaptic neurotransmission and bioenergetics in the mature nervous system. These studies also offer novel insights into neuropsychiatric disease mechanisms and contribute to the public debate about the benefits and the risks of cannabis use during pregnancy and in adolescence. © 2015 Macmillan Publishers Limited.

Galve-Roperh I.,Complutense University of Madrid | Chiurchiu V.,University of Teramo | Chiurchiu V.,European Center for Brain Research | Diaz-Alonso J.,Complutense University of Madrid | And 4 more authors.
Progress in Lipid Research | Year: 2013

Cannabinoids, the active components of cannabis (Cannabis sativa) extracts, have attracted the attention of human civilizations for centuries, much earlier than the discovery and characterization of their substrate of action, the endocannabinoid system (ECS). The latter is an ensemble of endogenous lipids, their receptors [in particular type-1 (CB1) and type-2 (CB 2) cannabinoid receptors] and metabolic enzymes. Cannabinoid signaling regulates cell proliferation, differentiation and survival, with different outcomes depending on the molecular targets and cellular context involved. Cannabinoid receptors are expressed and functional from the very early developmental stages, when they regulate embryonic and trophoblast stem cell survival and differentiation, and thus may affect the formation of manifold adult specialized tissues derived from the three different germ layers (ectoderm, mesoderm and endoderm). In the ectoderm-derived nervous system, both CB1 and CB2 receptors are present in neural progenitor/stem cells and control their self-renewal, proliferation and differentiation. CB1 and CB2 show opposite patterns of expression, the former increasing and the latter decreasing along neuronal differentiation. Recently, endocannabinoid (eCB) signaling has also been shown to regulate proliferation and differentiation of mesoderm-derived hematopoietic and mesenchymal stem cells, with a key role in determining the formation of several cell types in peripheral tissues, including blood cells, adipocytes, osteoblasts/osteoclasts and epithelial cells. Here, we will review these new findings, which unveil the involvement of eCB signaling in the regulation of progenitor/stem cell fate in the nervous system and in the periphery. The developmental regulation of cannabinoid receptor expression and cellular/subcellular localization, together with their role in progenitor/stem cell biology, may have important implications in human health and disease. © 2013 Elsevier Ltd. All rights reserved.

Rapino C.,University of Teramo | Rapino C.,StemTeCh Group | Battista N.,University of Teramo | Battista N.,European Center for Brain Research | And 4 more authors.
Human Reproduction Update | Year: 2014

Background: Infertility is a condition of the reproductive system that affects ~10-15% of couples attempting to conceive a baby. More than half of all cases of infertility are a result of female conditions, while the remaining cases can be attributed to male factors, or to a combination of both. The search for suitable biomarkers of pregnancy outcome is a challenging issue in human reproduction, aimed at identifying molecules with predictive significance of the reproductive potential of male and female gametes. Among the various candidates, endocannabinoids (eCBs), and in particular anandamide (AEA), represent potential biomarkers of human fertility disturbances. Any perturbation of the balance between synthesis and degradation of eCBs will result in local changes of their tone in human female and male reproductive tracts, which in turn regulates various pathophysiological processes, oocyte and sperm maturation included. Methods: PubMed and Web of Science databases were searched for papers using relevant keywords like 'biomarker', 'endocannabinoid', 'infertility', 'pregnancy' and 'reproduction'. Results: In this review, we discuss different studies on the measurements of AEA and related eCBs in human reproductive cells, tissues and fluids, where the local contribution of these bioactive lipids could be critical in ensuring normal sperm fertilizing ability and pregnancy. Conclusion: Based on the available data, we suggest that the AEA tone has the potential to be exploited as a novel diagnostic biomarker of infertility, to be used in association with assays of conventional hormones (e.g. progesterone, β-chorionic gonadotrophin) and semen analysis. However further quantitative research of its predictive capacity is required. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

D'Addario C.,University of Teramo | Di Francesco A.,University of Teramo | Pucci M.,University of Teramo | Finazzi Agro A.,Biomedical University of Rome | And 2 more authors.
FEBS Journal | Year: 2013

The endocannabinoid system, composed of endogenous lipids, their target receptors and metabolic enzymes, has been implicated in multiple biological functions in health and disease, both in the central nervous system and in peripheral organs. Despite the exponential growth of experimental evidence on the key role of endocannabinoid signalling in basic cellular processes, and on its potential exploitation for therapeutic interventions, much remains to be clarified about the respective regulatory mechanisms. Epigenetics refers to a set of post-translational modifications that regulate gene expression without causing variation in DNA sequence, endowed with a major impact on signal transduction pathways. The epigenetic machinery includes DNA methylation, histone modifications, nucleosome positioning and non-coding RNAs. Due to the reversibility of epigenetic changes, an emerging field of interest is the possibility of an 'epigenetic therapy' that could possibly be applied also to endocannabinoids. Here, we review current knowledge of epigenetic regulation of endocannabinoid system components under both physiological and pathological conditions, as well as the epigenetic changes induced by endocannabinoid signalling. © 2013 FEBS.

D'Addario C.,University of Teramo | D'Addario C.,Karolinska Institutet | Micioni Di Bonaventura M.V.,University of Camerino | Pucci M.,University of Teramo | And 6 more authors.
Neuroscience and Biobehavioral Reviews | Year: 2014

Overeating, frequently linked to an increasing incidence of overweight and obesity, has become epidemic and one of the leading global health problems. To explain the development of this eating behavior, new hypotheses involve the concept that many people might be addicted to food by losing control over their ability to regulate food intake. Among the different neurotransmitter networks that partake in the reward circuitry within the brain, a large body of evidence supports the involvement of the endocannabinoid system. Indeed, its dysfunctions might contribute to food addiction, by regulating appetite and food preference through central and peripheral mechanisms. Here, we review and discuss the role of endocannabinoid signaling in the reward circuitry, and the possible therapeutic exploitation of strategies based on its fine regulation. © 2014 Elsevier Ltd.

De Filippis B.,Instituto Superiore Of Sanita | Nativio P.,University of Rome La Sapienza | Fabbri A.,Instituto Superiore Of Sanita | Ricceri L.,Instituto Superiore Of Sanita | And 7 more authors.
Neuropsychopharmacology | Year: 2014

Rett syndrome (RTT) is a rare neurodevelopmental disorder, characterized by severe behavioral and physiological symptoms. Mutations in the methyl CpG-binding protein 2 gene (MECP2) cause >95% of classic cases, and currently there is no cure for this devastating disorder. The serotonin receptor 7 (5-HT7R) is linked to neuro-physiological regulation of circadian rhythm, mood, cognition, and synaptic plasticity. We presently report that 5-HT7R density is consistently reduced in cortical and hippocampal brain areas of symptomatic MeCP2-308 male mice, a RTT model. Systemic repeated treatment with LP-211 (0.25 mg/kg once/day for 7 days), a brain-penetrant selective 5-HT7R agonist, was able to rescue RTT-related defective performance: anxiety-related profiles in a Light/Dark test, motor abilities in a Dowel test, the exploratory behavior in the Marble Burying test, as well as memory in the Novelty Preference task. In the brain of RTT mice, LP-211 also reversed the abnormal activation of PAK and cofilin (key regulators of actin cytoskeleton dynamics) and of the ribosomal protein (rp) S6, whose reduced activation in MECP2 mutant neurons by mTOR is responsible for the altered protein translational control. Present findings indicate that pharmacological targeting of 5-HT7R improves specific behavioral and molecular manifestations of RTT, thus representing a first step toward the validation of an innovative systemic treatment. Beyond RTT, the latter might be extended to other disorders associated with intellectual disability. © 2014 American College of Neuropsychopharmacology. All rights reserved 0893-133X/14.

MacCarrone M.,University of Teramo | MacCarrone M.,European Center for Brain Research | Gasperi V.,University of Rome Tor Vergata | Catani M.V.,University of Rome Tor Vergata | And 4 more authors.
Annual Review of Nutrition | Year: 2010

Endocannabinoids bind to cannabinoid, vanilloid, and peroxisome proliferator-activated receptors. The biological actions of these polyunsaturated lipids are controlled by key agents responsible for their synthesis, transport and degradation, which together form an endocannabinoid system (ECS). In the past few years, evidence has been accumulated for a role of the ECS in regulating food intake and energy balance, both centrally and peripherally. In addition, up-regulation of the ECS in the gastrointestinal tract has a potential impact on lammatory bowel diseases. In this review, the main features of the ECS are summarized in order to put in better focus our current knowledge of the nutritional relevance of endocannabinoid signaling and of its role in obesity, cardiovascular pathologies, and gastrointestinal diseases. The central and peripheral pathways that underlie these effects are discussed, as well as the possible exploitation of ECS components as novel drug targets for therapeutic intervention in eating disorders. Copyright © 2010 by Annual Reviews. All rights reserved.

Bari M.,University of Rome Tor Vergata | Battista N.,University of Teramo | Pirazzi V.,University of Teramo | Maccarrone M.,University of Teramo | Maccarrone M.,European Center for Brain Research
Frontiers in Bioscience | Year: 2011

Epidemiological studies have highlighted the ever growing use of illegal drugs among teenagers. The negative effects of marijuana (a Cannabis sativa extract) on reproductive health are poorly known among young people, although chronic exposure to delta-9-tetrahydrocannabinol, the main psychoactive constituent of marijuana, impairs human reproductive potential by disrupting menstrual cycle, suppressing oogenesis and impairing embryo implantation and development, in women, and by increasing ejaculation problems, reducing sperm count and motility, and generating loss of libido and impotence, in men. Endocannabinoids, their metabolic enzymes and target receptors form the so called "endocannabinoid system" and they have been demonstrated to respond to fertility signals. In addition, they interfere with hormones, cytokines and other signalling molecules in both female and male reproductive events. In this review, we shall summarize the current knowledge on the endocannabinoid system, and on the multifaceted roles played by endocannabinoids in reproduction along the evolutionary axis from invertebrates to mammals. Furthermore, we shall discuss the potential use of distinct elements of the endocannabinoid system for the diagnosis and/or treatment of human infertility.

Karasu T.,University of Leicester | Marczylo T.H.,University of Leicester | Maccarrone M.,University of Teramo | Maccarrone M.,European Center for Brain Research | Konje J.C.,University of Leicester
Human Reproduction Update | Year: 2011

Background: Marijuana, the most used recreational drug, has been shown to have adverse effects on human reproduction. Endogenous cannabinoids (also called endocannabinoids) bind to the same receptors as those of Δ9-tetrahydrocannabinol (THC), the psychoactive component of Cannabis sativa. The most extensively studied endocannabinoids are anandamide (N-arachidonoylethanolamine, AEA) and 2-arachidonoylglycerol. The endocannabinoids, their congeners and the cannabinoid receptors, together with the metabolic enzymes and putative transporters form the endocannabinoid system (ECS). In this review, we summarize current knowledge about the relationships of ECS, sex steroid hormones and cytokines in female fertility, and underline the importance of this endocannabinoid-hormone-cytokine network. Methods: Pubmed and the Web of Science databases were searched for studies published since 1985, looking into the ECS, sex hormones, type-1/2 T-helper (Th1/Th2) cytokines, leukaemia inhibitory factor, leptin and reproduction. Results: The ECS plays a pivotal role in human reproduction. The enzymes involved in the synthesis and degradation of endocannabinoids normalize levels of AEA for successful implantation. The AEA degrading enzyme (fatty acid amide hydrolase) activity as well as AEA content in blood may potentially be used for the monitoring of early pregnancies. Progesterone and oestrogen are involved in the maintenance of endocannabinoid levels. The ECS plays an important role in the immune regulation of human fertility. Conclusions: The available studies suggest that tight control of the endocannabinoid-hormone-cytokine network is required for successful implantation and early pregnancy maintenance. This hormone-cytokine network is a key element at the maternal-foetal interface, and any defect in such a network may result in foetal loss. © The Author 2011. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved.

Chiurchiu V.,European Center for Brain Research
Current Topics in Medicinal Chemistry | Year: 2014

Despite multiple sclerosis (MS) represents one of the most fascinating mystery of modern medicine due to its unknown etiology and the incomplete knowledge of a clear mechanism of pathogenesis, progress against this disease has made giant leaps. Current management of MS takes advantage of many disease- modifying therapeutics of anti-inflammatory and immunomodulatory nature, whose primary aims are halting immune responses during attacks, preventing new attacks and avoiding disability. In this review, a synopsis on effective therapies targeting both immune-mediated responses and neurodegenerative processes is appointed. Oxidative stress has been also implicated in both the inflammatory and neurodegenerative pathological mechanisms underlying MS. The role of redox metabolism in MS is thus also reported, with particular focus on the latest improvements in the identification of oxidative stress as a potential new therapeutic target. © 2014 Bentham Science Publishers.

Loading European Center for Brain Research collaborators
Loading European Center for Brain Research collaborators