European Biological Control Laboratory

Thessaloníki, Greece

European Biological Control Laboratory

Thessaloníki, Greece
Time filter
Source Type

Giantsis I.A.,European Biological Control Laboratory | Castells Sierra J.,University of Lleida | Chaskopoulou A.,European Biological Control Laboratory
Phytoparasitica | Year: 2017

This is the first report of the invasive rice pest, rice water weevil (Lissorhoptrus oryzophilus Kuschel) in the Balkans. Adult specimens were collected in the rice field region of Central Macedonia, Greece during July–August, 2016. Morphological identification was verified by DNA barcoding, and the first COI sequence of L. oryzophilus from Greece was deposited in the GenBank database. This semi-aquatic insect is considered one of the most important rice pests globally, and its presence in the region may result in important yield and economic losses in rice production. Considering the highly invasive nature of this species, it is possible that it has spread to neighboring rice wetlands of the Southern Balkans, and additional field investigations are essential to accurately determine its geographic distribution and to help contain its spread. © 2017 Springer Science+Business Media Dordrecht

PubMed | Montpellier SupAgro, Montana State University, Colorado State University, Smithsonian Institution and 3 more.
Type: Journal Article | Journal: PloS one | Year: 2016

The wheat stem sawfly, Cephus cinctus Norton (Hymenoptera: Cephidae), is a key pest of wheat in the northern Great Plains of North America, and damage resulting from this species has recently expanded southward. Current pest management practices are inadequate and uncertainty regarding geographic origin, as well as limited data on population structure and dynamics across North America impede progress towards more informed management. We examined the genetic divergence between samples collected in North America and northeastern Asia, the assumed native range of C. cinctus using two mitochondrial regions (COI and 16S). Subsequently, we characterized the structure of genetic diversity in the main wheat producing areas in North America using a combination of mtDNA marker and microsatellites in samples collected both in wheat fields and in grasses in wildlands. The strong genetic divergence observed between North American samples and Asian congeners, in particular the synonimized C. hyalinatus, did not support the hypothesis of a recent American colonization by C. cinctus. Furthermore, the relatively high genetic diversity both with mtDNA and microsatellite markers offered additional evidence in favor of the native American origin of this pest. The genetic diversity of North American populations is structured into three genetic clusters and these are highly correlated with geography. Regarding the recent southern outbreaks in North America, the results tend to exclude the hypothesis of recent movement of damaging wheat stem sawfly populations from the northern area. The shift in host plant use by local populations appears to be the most likely scenario. Finally, the significance of these findings is discussed in the context of pest management.

PubMed | Rotterdam University, Bill and Melinda Gates Foundation, European Biological Control Laboratory, Genesis Laboratories Inc. and 8 more.
Type: | Journal: Parasites & vectors | Year: 2016

Visceral Leishmaniasis (VL) is a neglected vector-borne disease. In India, it is transmitted to humans by Leishmania donovani-infected Phlebotomus argentipes sand flies. In 2005, VL was targeted for elimination by the governments of India, Nepal and Bangladesh by 2015. The elimination strategy consists of rapid case detection, treatment of VL cases and vector control using indoor residual spraying (IRS). However, to achieve sustained elimination of VL, an appropriate post elimination surveillance programme should be designed, and crucial knowledge gaps in vector bionomics, human infection and transmission need to be addressed. This review examines the outstanding knowledge gaps, specifically in the context of Bihar State, India.The knowledge gaps in vector bionomics that will be of immediate benefit to current control operations include better estimates of human biting rates and natural infection rates of P. argentipes, with L. donovani, and how these vary spatially, temporally and in response to IRS. The relative importance of indoor and outdoor transmission, and how P. argentipes disperse, are also unknown. With respect to human transmission it is important to use a range of diagnostic tools to distinguish individuals in endemic communities into those who: 1) are to going to progress to clinical VL, 2) are immune/refractory to infection and 3) have had past exposure to sand flies.It is crucial to keep in mind that close to elimination, and post-elimination, VL cases will become infrequent, so it is vital to define what the surveillance programme should target and how it should be designed to prevent resurgence. Therefore, a better understanding of the transmission dynamics of VL, in particular of how rates of infection in humans and sand flies vary as functions of each other, is required to guide VL elimination efforts and ensure sustained elimination in the Indian subcontinent. By collecting contemporary entomological and human data in the same geographical locations, more precise epidemiological models can be produced. The suite of data collected can also be used to inform the national programme if supplementary vector control tools, in addition to IRS, are required to address the issues of people sleeping outside.

Meikle W.G.,European Biological Control Laboratory | Mercadier G.,European Biological Control Laboratory | Guermache F.,European Biological Control Laboratory | Bon M.-C.,European Biological Control Laboratory
Biological Control | Year: 2012

The ectoparasitic mite Varroa destructor is a major honey bee pest, and its control using pathogen-based biopesticides would resolve many of the problems, such as contamination and pesticide resistance, experienced with chemical control. A biopesticide, formulated with commercially-prepared conidia of a strain of Beauveria bassiana isolated from V. destructor was tested against the mites in bee colonies in southern France. The impact of treatment on hive survivorship, weight and mite infestation levels were very different from those of previous experiments using laboratory-prepared conidia: bee hives treated with the biopesticide died at a higher rate, lost more weight, and had higher mite densities at the end of the study than control hives. The biopesticide was subsequently found to be contaminated with bacteria. Two strains of bacteria were identified, by biotyping and sequencing data of the 16S rRNA and rpoB regions, and while the strains were distinct both were Pseudomonas sp. belonging to the P. fluorescens group. In dual cultures B. bassiana growth was slowed or suppressed when bacterial cfu density was about equal or greater than that of B. bassiana. Experiments using caged adult bees showed that bees ingesting diet and sugar solution treated with B. bassiana and kept at 30°C had significantly lower survival times than those treated with one of the bacterial strains, but the opposite was true at 33°C. Because one arthropod (honey bees) was treated for infestation by another (V. destructor), the impact of bacterial contamination was likely more noticeable than in most uses of biopesticides, such as treating plants against phytophagous insects. To reduce such risk in biopesticide development, a systematic screening for bacterial contamination prior to field application is recommended. © 2011.

Maguire D.,University of Toronto | Sforza R.,European Biological Control Laboratory | Smith S.M.,University of Toronto
Biological Invasions | Year: 2011

The alien invasive vines Vincetoxicum rossicum and Vincetoxicum nigrum (swallow-wort) are of major concern in eastern North America, where both species invade forested landscapes and threaten faunal and plant diversity. Among the few native natural enemies reported in Eurasia, the specialist chrysomelid, Chrysochus (Eumolpus) asclepiadeus (Coleoptera; Chrysomelidae), feeds on Vincetoxicum both above ground (as adults) and below ground (as larvae). The goal of our study was to assess the potential for using this beetle to manage invasive Vincetoxicum spp. in North America by quantifying the impact of herbivory by C. asclepiadeus on Vincetoxicum and determining whether this effect was influenced by plant density ("Allee effect"). Experimental work was carried out using a split plot design in the field in southern France. Pots of V. nigrum and V. hirundinaria, a substitute for V. rossicum, were planted at high (255 plants/m2), medium (127 plants/m2), and low (32 plants/m2) plant densities, and received treatments of 0 (control), 2 or 4 C. asclepiadeus adult beetles/pot. Leaf damage, root and shoot biomass, and quantity of seeds were measured after 4 weeks of adult feeding. Densities of 2 and 4 beetles/pot caused similar damage, with significant reductions in plant biomass at low plant density. While V. hirundinaria increased allocation of resources to roots in response to herbivory, V. nigrum did not. Seed production was greatest for both species grown at low plant densities, but only V. nigrum produced fewer seeds in response to herbivory. Our results, based on the effects of herbivory by C. asclepiadeus adults, suggest that if this beetle were to be introduced into North America for the management of Vincetoxicum spp. such as V. rossicum, reductions in plant biomass and spread would be greatest if beetles were released on edges or in newly-established satellite populations at low plant densities. In the case of V. nigrum, beetles could be released irrespective of plant density as reproductive output and seed dispersal would be reduced similarly. © 2011 Springer Science+Business Media (outside the USA).

Suckling D.M.,The New Zealand Institute for Plant and Food Research Ltd | Sforza R.F.H.,European Biological Control Laboratory
PLoS ONE | Year: 2014

A systematic review focused by plant on non-target impacts from agents deliberately introduced for the biological control of weeds found significant non-target impacts to be rare. The magnitude of direct impact of 43 biocontrol agents on 140 non-target plants was retrospectively categorized using a risk management framework for ecological impacts of invasive species (minimal, minor, moderate, major, massive). The vast majority of agents introduced for classical biological control of weeds (>99% of 512 agents released) have had no known significant adverse effects on non-target plants thus far; major effects suppressing non-target plant populations could be expected to be detectable. Most direct non-target impacts on plants (91.6%) were categorized as minimal or minor in magnitude with no known adverse long-term impact on non-target plant populations, but a few cacti and thistles are affected at moderate (n = 3), major (n = 7) to massive (n = 1) scale. The largest direct impacts are from two agents (Cactoblastis cactorum on native cacti and Rhinocyllus conicus on native thistles), but these introductions would not be permitted today as more balanced attitudes exist to plant biodiversity, driven by both society and the scientific community. Our analysis shows (as far as is known), weed biological control agents have a biosafety track record of >99% of cases avoiding significant non-target impacts on plant populations. Some impacts could have been overlooked, but this seems unlikely to change the basic distribution of very limited adverse effects. Fewer non-target impacts can be expected in future because of improved science and incorporation of wider values. Failure to use biological control represents a significant opportunity cost from the certainty of ongoing adverse impacts from invasive weeds. It is recommended that a simple five-step scale be used to better communicate the risk of consequences from both action (classical biological control) and no action (ongoing impacts from invasive weeds).

Brabbs T.,UK Environment Agency | Collins D.,UK Environment Agency | Herard F.,European Biological Control Laboratory | Maspero M.,Fondazione Minoprio | Eyre D.,UK Environment Agency
Pest Management Science | Year: 2015

This review summarises the literature on the biological control of Anoplophora spp. (Coleoptera: Cerambycidae) and discusses its potential for use in Europe. Entomopathogenic fungi: Beauveria brongniartii Petch (Hypocreales: Cordycipitaceae) has already been developed into a commercial product in Japan, and fungal infection results in high mortality rates. Parasitic nematodes: Steinernema feltiae Filipjev (Rhabditida: Steinernematidae) and Steinernema carpocapsae Weiser have potential for use as biopesticides as an alternative to chemical treatments. Parasitoids: a parasitoid of Anoplophora chinensis Forster, Aprostocetus anoplophorae Delvare (Hymenoptera: Eulophidae), was discovered in Italy in 2002 and has been shown to be capable of parasitising up to 72% of A. chinensis eggs; some native European parasitoid species (e.g. Spathius erythrocephalus) also have potential to be used as biological control agents. Predators: two woodpecker (Piciformis: Picidae) species that are native to Europe, Dendrocopos major Beicki and Picus canus Gmelin, have been shown to be effective at controlling Anoplophora glabripennis Motschulsky in Chinese forests. The removal and destruction of infested and potentially infested trees is the main eradication strategy for Anoplophora spp. in Europe, but biological control agents could be used in the future to complement other management strategies, especially in locations where eradication is no longer possible. © 2014 Crown copyright.

Paprocki N.,Boise State University | Heath J.A.,Boise State University | Novak S.J.,Boise State University | Novak S.J.,European Biological Control Laboratory
PLoS ONE | Year: 2014

Studies of multiple taxa across broad-scales suggest that species distributions are shifting poleward in response to global climate change. Recognizing the influence of distribution shifts on population indices will be an important part of interpreting trends within management units because current practice often assumes that changes in local populations reflect local habitat conditions. However, the individual- and population-level processes that drive distribution shifts may occur across a large, regional scale and have little to do with the habitats within the management unit. We examined the latitudinal center of abundance for the winter distributions of six western North America raptor species using Christmas Bird Counts from 1975-2011. Also, we considered whether population indices within western North America Bird Conservation Regions (BCRs) were explained by distribution shifts. All six raptors had significant poleward shifts in their wintering distributions over time. Rough-legged Hawks (Buteo lagopus) and Golden Eagles (Aquila chrysaetos) showed the fastest rate of change, with 8.41 km yr-1 and 7.74 km yr -1 shifts, respectively. Raptors may be particularly responsive to warming winters because of variable migration tendencies, intraspecific competition for nesting sites that drives males to winter farther north, or both. Overall, 40% of BCR population trend models were improved by incorporating information about wintering distributions; however, support for the effect of distribution on BCR indices varied by species with Rough-legged Hawks showing the most evidence. These results emphasize the importance of understanding how regional distribution shifts influence local-scale population indices. If global climate change is altering distribution patterns, then trends within some management units may not reflect changes in local habitat conditions. The methods used to monitor and manage bird populations within local BCRs will fundamentally change as species experience changes in distribution in response to climate change. © 2014 Paprocki et al.

Chen L.-Z.,Chinese Academy of Agricultural Sciences | Liang G.-M.,Chinese Academy of Agricultural Sciences | Zhang J.,Chinese Academy of Agricultural Sciences | Wu K.-M.,Chinese Academy of Agricultural Sciences | And 2 more authors.
Archives of Insect Biochemistry and Physiology | Year: 2010

Aminopeptidase N (APN) and cadherin-like proteins have been previously identified as Cry1Ac-binding proteins in Helicoverpa armigera (Hübner). In this study, a proteomic approach was used to identify novel Cry1Ac-binding proteins in H. armigera. Brush border membrane vesicles (BBMV) of H. armigera were extracted and separated by two-dimensional gel electrophoresis (2-DE). Cry1Ac-binding proteins were detected using antisera against Cry1Ac. Peptide mass fingerprinting (PMF) was used to identify Cry1Ac-binding proteins. In total, four proteins were identified as candidate Cry1Ac-binding proteins in H. armigera: vacuolar ATP synthase (V-ATPase) subunit B, actin, heat shock cognate protein (HSCP), and a novel protein. © 2009 Wiley Periodicals, Inc.

Daane K.M.,University of California at Berkeley | Middleton M.C.,University of California at Berkeley | Sforza R.,European Biological Control Laboratory | Cooper M.L.,University of California Cooperative Extension | And 4 more authors.
Environmental Entomology | Year: 2011

A simple molecular tool was developed and tested to identify seven mealybug species found in North American vineyards: Pseudococcus maritimus Ehrhorn, Pseudococcus viburni (Signoret), Pseudococcus longispinus (Targioni-Tozzeti), Pseudococcus calceolariae (Maskell), Planococcus ficus (Signoret), Planococcus citri (Risso), and Ferrisia gilli Gullan. The developed multiplex PCR is based on the mitochondrial cytochrome c oxidase subunit one gene. In tests, this single-step multiplex PCR correctly identified 95 of 95 mealybug samples, representing all seven species and collected from diverse geographic regions. To test the sensitivity, single specimen samples with different Pl. ficus developmental stages (egg to adult female and adult male) were processed PCR and the resulting output provided consistent positive identification. To test the utility of this protocol for adult males caught in sex baited pheromone traps, Pl. ficus adult males were placed in pheromone traps, aged at a constant temperature of 26 ± 2°C, and processed with the multiplex each day thereafter for 8 d. Results showed consistent positive identification for up to 6 d (range, 68 d). Results are discussed with respect to the usefulness of this molecular tool for the identification of mealybugs in pest management programs and biosecurity of invasive mealybugs. © 2011 Entomological Society of America.

Loading European Biological Control Laboratory collaborators
Loading European Biological Control Laboratory collaborators