Time filter

Source Type

Garching bei München, Germany

Muraoka K.,Plazwire Co. | Wagner F.,Max Planck Institute for Plasma Physics (Greifswald) | Yamagata Y.,Kyushu University | Donne A.J.H.,EUROfusion
Journal of Instrumentation

The accident at the Fukushima Dai-ichi nuclear power station in 2011 has caused profound effects on energy policies in Japan and worldwide. This is particularly because it occurred at the time of the growing awareness of global warming forcing measures towards decarbonised energy production, namely the use of fossil fuels has to be drastically reduced from the present level of more than 80% by 2050. A dilemma has now emerged because nuclear power, a CO2-free technology with proven large-scale energy production capability, lost confidence in many societies, especially in Japan and Germany. As a consequence, there is a world-wide effort now to expand renewable energies (REs), specifically photo-voltaic (PV) and wind power. However, the authors conjecture that PV and wind power can provide only up to a 40% share of the electricity production as long as sufficient storage is not available. Beyond this level, the technological (high grid power) and economic problems (large surplus production) grow. This is the result of the analysis of the growing use of REs in the electricity systems for Germany and Japan. The key element to overcome this situation is to develop suitable energy storage technologies. This is particularly necessary when electricity will become the main energy source because also transportation, process heat and heating, will be supplied by it. Facing the difficulty in replacing all fossil fuels in all countries with different technology standards, a rapid development of carbon capture and storage (CCS) might also be necessary. Therefore, for the short-range strategy up to 2050, all meaningful options have to be developed. For the long-range strategy beyond 2050, new energy sources (such as thermonuclear fusion, solar fuels and nuclear power - if inherently safe concepts will gain credibility of societies again), and large-scale energy storage systems based on novel concepts (such as large-capacity batteries and hydrogen) is required. It is acknowledged that the prediction of the future is difficult; therefore, the only insurance in this situation is by intensified research into all viable options. © 2016 IOP Publishing Ltd and Sissa Medialab srl. Source

You J.H.,Max Planck Institute for Plasma Physics (Garching) | Visca E.,ENEA | Bachmann C.,EUROfusion | Barrett T.,Culham Center for Fusion Energy | And 11 more authors.
Nuclear Materials and Energy

Recently, an integrated program of conceptual design activities for the European DEMO reactor was launched in the framework of the EUROfusion Consortium, where reliable power handling capability was identified as one of the most critical scientific as well as technological challenges for a DEMO reactor. The divertor is the key in-vessel plasma-facing component being in charge of power exhaust and removal of impurity particles. The DEMO divertor target will have to withstand extreme thermal loads where the local peak heat flux is expected to reach up to 20 MW/m2 during slow transient events in DEMO. To assure sufficient heat removal capability of the divertor target against normal and transient operational scenarios under expected cumulative neutron dose of up to 13 dpa is one of the fundamental engineering challenges imposed on target design. To develop the design of the DEMO divertor and related technologies, an R&D work package 'Divertor' has been set up in this consortium. The subproject 'Target Development' is devoted to the development of the conceptual design and the core technologies of the plasma-facing target. Devising and implementing novel structural heat sink materials (e.g. W/Cu composites) to advanced target design concepts is one of the major objectives of this subproject. In this paper, the underlying design requirements imposed by the envisaged power exhaust goal and the prominent material-design interface issues are discussed. In addition, the candidate design concepts being currently considered are presented together with the related material issues. Finally, the first results achieved so far are presented. © 2016 The Authors. Source

Vallcorba R.,CEA Saclay Nuclear Research Center | Lacroix B.,French Atomic Energy Commission | Ciazynski D.,French Atomic Energy Commission | Torre A.,French Atomic Energy Commission | And 5 more authors.

The future DEMO Toroidal Field (TF) magnets are likely to feature cable-in-conduit conductors (CICC) cooled by forced flow of supercritical helium. Design activities were carried out at CEA to provide a winding pack compatible with DEMO plant requirements. The CEA proposal comprises, for each of the 16 D-shaped windings, 10 double-pancakes (2×392m long) wound in 10 turns. The conductor is a square-shaped Nb3Sn double channel conductor with a central spiral, carrying a nominal current of 95.5kA. We present a thermo-hydraulic analyses focused on the central, most critical pancake, where the maximum field is reached, aiming at evaluating the integrity of the proposed conductor design. Both normal and off-normal simulations were performed using detailed electromagnetic and neutron heating load maps as input, and evaluating operational quantities such as the temperature margin in burn conditions, and the hot spot temperature in quench conditions. We assessed the sensitivity of these quantities to some driving parameters, notably mass flow rate and the choice of friction factor correlation for the temperature margin, and quench initiation features for the hot spot temperature. Furthermore, the influence of the casing cooling on the temperature margin is analyzed. The study is carried out using two thermohydraulic models. © 2016 Elsevier Ltd. Source

Eurofusion | Date: 2009-07-14

Drinking water; Bottled water.

Eurofusion | Date: 2010-09-21

Drinking water.

Discover hidden collaborations