Time filter

Source Type

Saint-Étienne, France

Durech J.,Charles University | Kaasalainen M.,Tampere University of Technology | Herald D.,International Occultation Timing Association IOTA | Dunham D.,KinetX, Inc | And 8 more authors.

Asteroid sizes can be directly measured by observing occultations of stars by asteroids. When there are enough observations across the path of the shadow, the asteroid's projected silhouette can be reconstructed. Asteroid shape models derived from photometry by the lightcurve inversion method enable us to predict the orientation of an asteroid for the time of occultation. By scaling the shape model to fit the occultation chords, we can determine the asteroid size with a relative accuracy of typically ∼10%. We combine shape and spin state models of 44 asteroids (14 of them are new or updated models) with the available occultation data to derive asteroid effective diameters. In many cases, occultations allow us to reject one of two possible pole solutions that were derived from photometry. We show that by combining results obtained from lightcurve inversion with occultation timings, we can obtain unique physical models of asteroids. © 2011 Elsevier Inc. Source

Tanga P.,French National Center for Scientific Research | Carry B.,French National Center for Scientific Research | Colas F.,French National Center for Scientific Research | Delbo M.,French National Center for Scientific Research | And 39 more authors.
Monthly Notices of the Royal Astronomical Society

Asteroid (234) Barbara is the prototype of a category of asteroids that has been shown to be extremely rich in refractory inclusions, the oldest material ever found in the Solar system. It exhibits several peculiar features, most notably its polarimetric behaviour. In recent years other objects sharing the same property (collectively known as 'Barbarians') have been discovered. Interferometric observations in the mid-infrared with the ESO VLTI (Very Large Telescope Interferometer) suggested that (234) Barbara might have a bi-lobated shape or even a large companion satellite. We use a large set of 57 optical light curves acquired between 1979 and 2014, together with the timings of two stellar occultations in 2009, to determine the rotation period, spin-vector coordinates, and 3-D shape of (234) Barbara, using two different shape reconstruction algorithms. By using the light curves combined to the results obtained from stellar occultations, we are able to show that the shape of (234) Barbara exhibits large concave areas. Possible links of the shape to the polarimetric properties and the object evolution are discussed. We also show that VLTI data can be modelled without the presence of a satellite. © 2015 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society. Source

Dunham D.W.,International Occultation Timing Association IOTA | Herald D.,IOTA | Timerson B.,IOTA | Maley P.,IOTA | And 4 more authors.
Proceedings of the International Astronomical Union

For 40 years, the sizes and shapes of many dozens of asteroids have been determined from observations of asteroidal occultations, and over a thousand high-precision positions of the asteroids relative to stars have been measured. Some of the first evidence for satellites of asteroids was obtained from the early efforts; now, the orbits and sizes of some satellites discovered by other means have been refined from occultation observations. Also, several close binary stars have been discovered, and the angular diameters of some stars have been measured from analysis of these observations. The International Occultation Timing Association (IOTA) coordinates this activity worldwide, from predicting and publicizing the events, to accurately timing the occultations from as many stations as possible, and publishing and archiving the observations. Copyright © 2016 International Astronomical Union. Source

Braga-Ribas F.,Observatorio Nacional | Sicardy B.,Observatoire de Paris | Sicardy B.,University Pierre and Marie Curie | Ortiz J.L.,Institute Astrofisica Of Andalucia Csic | And 52 more authors.
Astrophysical Journal

We present results derived from the first multi-chord stellar occultations by the transneptunian object (50000) Quaoar, observed on 2011 May 4 and 2012 February 17, and from a single-chord occultation observed on 2012 October 15. If the timing of the five chords obtained in 2011 were correct, then Quaoar would possess topographic features (crater or mountain) that would be too large for a body of this mass. An alternative model consists in applying time shifts to some chords to account for possible timing errors. Satisfactory elliptical fits to the chords are then possible, yielding an equivalent radius Requiv = 555 ± 2.5 km and geometric visual albedo pV = 0.109 ± 0.007. Assuming that Quaoar is a Maclaurin spheroid with an indeterminate polar aspect angle, we derive a true oblateness of , an equatorial radius of km, and a density of 1.99 ± 0.46 g cm-3. The orientation of our preferred solution in the plane of the sky implies that Quaoar's satellite Weywot cannot have an equatorial orbit. Finally, we detect no global atmosphere around Quaoar, considering a pressure upper limit of about 20 nbar for a pure methane atmosphere. © 2013. The American Astronomical Society. All rights reserved. Source

Sicardy B.,University of Paris Descartes | Sicardy B.,University Pierre and Marie Curie | Sicardy B.,Institut Universitaire de France | Bolt G.,Craigie | And 32 more authors.
Astronomical Journal

Pluto and its main satellite, Charon, occulted the same star on 2008 June 22. This event was observed from Australia and La Réunion Island, providing the east and north Charon Plutocentric offset in the sky plane (J2000): X = + 12,070.5 ± 4 km (+ 546.2 ± 0.2 mas), Y = + 4,576.3 ± 24 km (+ 207.1 ± 1.1 mas) at 19:20:33.82 UT on Earth, corresponding to JD 2454640.129964 at Pluto. This yields Charon's true longitude L = 153.483 ± 0. ° 071 in the satellite orbital plane (counted from the ascending node on J2000 mean equator) and orbital radius r = 19,564 ± 14 km at that time. We compare this position to that predicted by (1) the orbital solution of Tholen & Buie (the "TB97" solution), (2) the PLU017 Charon ephemeris, and (3) the solution of Tholen et al. (the "T08" solution). We conclude that (1) our result rules out solution TB97, (2) our position agrees with PLU017, with differences of δL = + 0.073 ± 0. ? 071 in longitude, and δr = + 0.6 ± 14 km in radius, and (3) while the difference with the T08 ephemeris amounts to only δL = 0.033 ± 0. ? 071 in longitude, it exhibits a significant radial discrepancy of δr = 61.3 ± 14 km. We discuss this difference in terms of a possible image scale relative error of 3.35 × 10-3in the 2002-2003 Hubble Space Telescope images upon which the T08 solution is mostly based. Rescaling the T08 Charon semi-major axis, a = 19, 570.45 km, to the TB97 value, a=19636 km, all other orbital elements remaining the same ("T08/TB97" solution), we reconcile our position with the re-scaled solution by better than 12 km (or 0.55 mas) for Charon's position in its orbital plane, thus making T08/TB97 our preferred solution. © 2011. The American Astronomical Society. All rights reserved. Source

Discover hidden collaborations