EUMETSAT

Darmstadt, Germany
Darmstadt, Germany

Time filter

Source Type

L'observation de la couleur des océans et l'imagerie des écosystèmes marins depuis l'espace font partie intégrante de ce nouveau service de surveillance marine. Il faut dire que les océans ne sont pas toujours bleus. Leur couleur varie en effet considérablement en fonction de ce que transportent les courants océaniques. Des capteurs satellitaires spéciaux, tels que l'instrument de détermination de la couleur des surfaces continentales et océaniques (OLCI) à bord de Sentinelle-3, ont été développés pour détecter les tonalités chromatiques de l'eau en constante évolution afin d'en identifier le contenu. La couleur des océans peut être influencée par plusieurs facteurs tels que les sédiments en suspension ou la présence d'algues microscopiques. Cela peut paraître trivial, mais la surveillance de la couleur de l'océan est réellement essentielle pour observer de près les proliférations d'algues toxiques qui peuvent avoir des effets dévastateurs sur l'aquaculture, et notamment sur la pisciculture. Le nouveau flux de données provenant du satellite Sentinelle-3 de Copernicus et désormais accessible via les systèmes de diffusion de données d'EUMETSAT - librement et gratuitement - va permettre à la science de la couleur des océans de franchir un nouveau pas. Des scientifiques de renom et des conférenciers de marque provenant d'un large éventail d'institutions et d'agences, pour ne citer que le D[r] Shubha Sathyendranath, responsable Télédétection et Optique marine et directrice-ajointe pour le Partenariat pour l'observation de l'océan mondial au Laboratoire marin de Plymouth, et le Dr Mark Dowell, Surveillance environnementale mondiale, du Centre commun de recherche CCR) de la Commission européenne, se prêteront à des entretiens dédiés dans le cadre desquels ils présenteront des résultats sur des sujets d'actualité et décriront leurs attentes pour le futur. En orbite géostationnaire, EUMETSAT exploite actuellement les satellites Meteosat-9, -10 et -11 sur l'Europe et l'Afrique et Meteosat-8 sur l'océan Indien. Les données, produits et services des satellites opérationnels d'EUMETSAT apportent une contribution vitale à la prévision du temps et à la surveillance de l'environnement et du changement climatique.


L'observation de la couleur des océans et l'imagerie des écosystèmes marins depuis l'espace font partie intégrante de ce nouveau service de surveillance marine. Il faut dire que les océans ne sont pas toujours bleus. Leur couleur varie en effet considérablement en fonction de ce que transportent les courants océaniques. Des capteurs satellitaires spéciaux, tels que l'instrument de détermination de la couleur des surfaces continentales et océaniques (OLCI) à bord de Sentinelle-3, ont été développés pour détecter les tonalités chromatiques de l'eau en constante évolution afin d'en identifier le contenu. La couleur des océans peut être influencée par plusieurs facteurs tels que les sédiments en suspension ou la présence d'algues microscopiques. Cela peut paraître trivial, mais la surveillance de la couleur de l'océan est réellement essentielle pour observer de près les proliférations d'algues toxiques qui peuvent avoir des effets dévastateurs sur l'aquaculture, et notamment sur la pisciculture. Le nouveau flux de données provenant du satellite Sentinelle-3 de Copernicus et désormais accessible via les systèmes de diffusion de données d'EUMETSAT - librement et gratuitement - va permettre à la science de la couleur des océans de franchir un nouveau pas. Des scientifiques de renom et des conférenciers de marque provenant d'un large éventail d'institutions et d'agences, pour ne citer que le D[r] Shubha Sathyendranath, responsable Télédétection et Optique marine et directrice-ajointe pour le Partenariat pour l'observation de l'océan mondial au Laboratoire marin de Plymouth, et le D[r] Mark Dowell, Surveillance environnementale mondiale, du Centre commun de recherche CCR) de la Commission européenne, se prêteront à des entretiens dédiés dans le cadre desquels ils présenteront des résultats sur des sujets d'actualité et décriront leurs attentes pour le futur. En orbite géostationnaire, EUMETSAT exploite actuellement les satellites Meteosat-9, -10 et -11 sur l'Europe et l'Afrique et Meteosat-8 sur l'océan Indien. Les données, produits et services des satellites opérationnels d'EUMETSAT apportent une contribution vitale à la prévision du temps et à la surveillance de l'environnement et du changement climatique.


News Article | May 9, 2017
Site: www.prnewswire.co.uk

Sentinel-3 constitutes a major contribution of the European Copernicus programme towards monitoring ocean colour. At the International Ocean Colour Science (IOCS) meeting in Lisbon, Portugal from 15 to 19 May, key scientific experts will discuss emerging applications and cutting edge results based on the new European products that will be showcased during the meeting. Observations of ocean colour, the imaging of marine ecosystems from orbit, is an integral part of this new marine service. Oceans are not always blue. In fact, the colour of the ocean varies considerably depending on the contents carried along with the currents. Special satellite sensors, like the Ocean and Land Colour Instrument (OLCI) aboard Sentinel-3 have been developed to track the ever shifting water hues in order to identify its contents. Ocean colour can be influenced by a number of factors such as suspended sediments or microscopic algae. It might sound trivial - but monitoring ocean colour is actually vital to monitoring harmful algae blooms that can have devastating effects on aquaculture such as fish farms. Ocean colour data are also being used to monitor water quality, pollution, sediment transport, and to assess the role of the ocean in the carbon cycle in our changing climate. These data are now indispensable to the management of marine resources, fisheries, marine and coastal ecosystems. With the new flow of data from the Copernicus Sentinel-3 satellite now available via EUMETSAT's data dissemination systems - openly and free of charge - ocean colour science will be taken to the next level. Leading scientists and keynote speakers from a wide range of institutions and agencies, including among others Dr. Shubha Sathyendranath, Head of Remote Sensing and Marine Optics at Plymouth Marine Laboratory, and Dr. Mark Dowell, Global Environment Monitoring Unit at the Joint Research Centre of the European Commission, will be available to present topical findings and expectations for the future in dedicated interviews. The programme will include breakout workshops such as "Hyperspectral remote sensing" and multiple sessions including "Copernicus Session: Emerging applications and science from the Sentinel missions", among others. Copernicus represents an independent European capacity for the operational provision of global Earth Observation information. The programme consists of a set of highly developed systems which collect data from Earth observation satellites (Sentinel and contributing missions) and in-situ sensors. Copernicus data are openly available, free of charge. The European Union has entrusted EUMETSAT with exploiting the four Sentinel missions of the Copernicus space component dedicated to the monitoring of atmosphere, ocean and climate on its behalf. EUMETSAT will carry out these tasks in cooperation with ESA. The European Organisation for the Exploitation of Meteorological Satellites is an intergovernmental organisation based in Darmstadt, Germany, currently with 30 Member States and one Cooperating State. EUMETSAT operates the geostationary satellites Meteosat-9, -10 and -11 over Europe and Africa, and Meteosat-8 over the Indian Ocean. EUMETSAT also operates two Metop polar-orbiting satellites as part of the Initial Joint Polar System (IJPS) shared with the US National Oceanic and Atmospheric Administration (NOAA). EUMETSAT is a partner in the cooperative high precision ocean altimetry Jason missions involving Europe and the United States (Jason-2, Jason-3 and Jason-CS/Sentinel-6). The data and products from EUMETSAT's satellites are vital to weather forecasting and make a significant contribution to the monitoring of environment and climate change. EUMETSAT has established cooperation with operators of Earth Observation satellites from Europe and China, India, Japan, Russia and the United States. Please contact Claudia Ritsert-Clark (claudia.ritsertclark@eumetsat.int ; +49-6151-8076050) for more information regarding Copernicus, EUMETSAT and the International Ocean Colour Science meeting. For more information please follow the link: http://www.iocs.ioccg.org/


Teledyne e2v has set a European mission first by re-engineering commercial microprocessors that provide Thales Alenia Space with a major increase in processing speed and power for lightning imaging satellites' on-board computer (OBC) HONG KONG, CHINA--(Marketwired - Jun 29, 2017) - Thales Alenia Space has gained a 10-times increase in the processing speed and power for its OBC, with the design and qualification process cut by up to four years, thanks to Teledyne e2v's expertise of transforming the latest commercial grade processors into spaceflight-ready models. In a first for a European mission, Teledyne e2v's re-engineered PC7448 microprocessors will be used at the heart of Thales Alenia Space's OBC that serve the Lightning Imager (LI) systems on EUMETSAT's next generation Meteosat geostationary meteorological satellites. Four Meteosat MTG-I satellites, scheduled for launch from 2019, will be equipped with LI systems that will place a major demand on their on-board computers to deliver the sensitivity and discrimination required for near real-time lightning detection over the Earth's full hemisphere. Teledyne e2v has helped Thales Alenia Space meet this challenge by re-engineering commercial grade PC7448 1.3 GHz processors in accordance with NASA's MIL-PRF-38535 Class Y (QML Y) quality standard that guarantees best-in-class reliability. Now, for the first time, Thales Alenia Space can utilise a microprocessor offering the same performance as the latest desktop PCs in a spaceflight-ready version capable of surviving the rigours of a 15-year mission. The satellite LI systems will facilitate the monitoring and tracking of active convective areas and storm life cycles critical for nowcasting and very short range forecasting of severe weather events. Monitoring of lightning also helps assess the impact of climate change on thunderstorm activity. Lightning is a major source of harmful atmospheric nitrogen oxides (NOx) that play a key role in the ozone conversion process and acid rain generation. A detailed knowledge of the global distribution of lightning is therefore a prerequisite for studying and monitoring NOx-related physical and chemical processes in the atmosphere. "The design and qualification of space microprocessors to ensure that they can withstand exposure to shock, vibration, extreme temperatures and radiation can take on average, five to seven years," said Nicolas Chantier, Teledyne e2v's Marketing Director for Signal Processing Solutions. "That means any processor designed specifically for space is effectively way behind the current state-of-the-art by the time it is ready for launch. We have found a way to complete this process in one third of the time, with no compromise on quality, by adapting powerful commercial grade processors and up-screening them for space." Visit www.e2v.com/Semis to find out more. Notes to Editors: Teledyne e2v's innovations lead developments in healthcare, life sciences, space, transportation, defence and security and industrial markets. Teledyne e2v offers high-performance, high-reliability semiconductor solutions, which address the critical functions of the complete signal chain. For more information www.teledyne-e2v.com/semis. About EUMETSAT EUMETSAT is an intergovernmental organisation founded in 1986. Its purpose is to supply weather and climate-related satellite data, images and products -- 24 hours a day, 365 days a year -- to the National Meteorological Services of its Member and Cooperating States in Europe, and other users worldwide. www.eumetsat.int


News Article | March 17, 2016
Site: phys.org

The map was generated from the first 10 days of data collected once Jason-3 reached its operational orbit of 1,336 kilometers on Feb. 12. It shows the continuing evolution of the ongoing El Niño event that began early last year. After peaking in January, the high sea levels in the eastern Pacific are now beginning to shrink. Launched Jan. 17 from California's Vandenberg Air Force Base, Jason-3 is operated by the National Oceanic and Atmospheric Administration (NOAA) in partnership with NASA, the French Space Agency Centre National d'Etudes Spatiales (CNES) and the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). Its nominal three-year mission will continue nearly a quarter-century record of monitoring changes in global sea level. These measurements of ocean surface topography are used by scientists to help calculate the speed and direction of ocean surface currents and to gauge the distribution of solar energy stored in the ocean. Information from Jason-3 will be used to monitor climate change and track phenomena like El Niño. It will also enable more accurate weather, ocean and climate forecasts, including helping global weather and environmental agencies more accurately forecast the strength of tropical cyclones. Jason-3 data will also be used for other scientific, commercial and operational applications, including monitoring of deep-ocean waves; forecasts of surface waves for offshore operators; forecasts of currents for commercial shipping and ship routing; coastal forecasts to respond to environmental challenges like oil spills and harmful algal blooms; coastal modeling crucial for marine mammal and coral reef research. "We are very happy to have been able to deploy so quickly the JASON-3 satellite on its orbit, just behind JASON-2, Gérard Zaouche, CNES project manager said, allowing us to begin the mission product comparison with JASON-2 so easily. "The performances of this new mission are already very promising. Thanks to the good behavior of the instruments, the satellite and all the elements of the system, users will be able to benefit soon from this new high-accuracy mission." That record began with the 1992 launch of the NASA/CNES TOPEX/Poseidon mission (1992-2006) and was continued by Jason-1 (2001-2013); and Jason-2, launched in 2008 and still in operation. Data from Jason-3's predecessor missions show that mean sea level has been rising by about 0.12 inches (3 millimeters) a year since 1993. Over the past several weeks, mission controllers activated and checked out Jason-3's systems, instruments and ground segment, all of which are functioning properly. They also maneuvered Jason-3 into its operational orbit, where it now flies in formation with Jason-2 in the same orbit, approximately 80 seconds apart. The two satellites will make nearly simultaneous measurements over the mission's six-month checkout phase to allow scientists to precisely calibrate Jason-3's instruments. Remko Scharroo, Remote Sensing Scientist at EUMETSAT said. "Jason-3 is continuing the climate data record of sea level change as measured by altimeters going back to 1992. The Jason missions have become the reference for all satellite altimeters. "Until the summer, Jason-2 and Jason-3 overfly the same spot of ocean just 80 seconds apart. This allows us to cross-calibrate those missions with extreme precision of less than one millimeter of sea level, thus ensuring a consistent time series. "With the Sentinel-3 just launched as well, one of our first efforts during the commissioning of the Sentinel-3 SRAL altimeter will be to calibrate it against the Jason-2 and -3 missions. "Taken together, these missions will help us not only to monitor the large-scale changes of the ocean but also those at smaller scales. "The myriad of benefits of Jason-3 include near real-time applications such as hurricane forecasting, monitoring of El Niño, and modeling of ocean currents. And also societal benefits for the long term, such as the monitoring of sea level rise." Once Jason-3 is fully calibrated and validated, it will begin full science operations, precisely measuring the height of 95 percent of the world's ice-free ocean every 10 days and providing oceanographic products to users around the world. Jason-2 will then be moved into a new orbit, with ground tracks that lie halfway between those of Jason-3. This move will double coverage of the global ocean and improve data resolution for both missions. This tandem mission will improve our understanding of ocean currents and eddies and provide better information for forecasting them throughout the global oceans. EUMETSAT, CNES and NOAA will process data from Jason-3, with EUMETSAT being responsible for data services to users of the EUMETSAT and EU Member States, on behalf of the EU Copernicus Programme. Data access in Europe will be secured via the multi-mission infrastructure available at EUMETSAT and CNES, including EUMETSAT's EUMETCast real-time data dissemination system, Earth Observation Portal and archives, as well as the CNES/AVISO data system. Jason-3 is the result of an international partnership between EUMETSAT, the French Space Agency (CNES), the US National Oceanic and Atmospheric Administration (NOAA), the US National Aeronautics and Space Administration (NASA), and the European Union, which funds European contributions to Jason-3 operations as part of its Copernicus Programme. Within Copernicus, Jason-3 is the reference mission for cross-calibrating Sentinel-3 observations of sea surface height and the precursor to the future cooperative Sentinel-6/Jason-CS mission also implemented in partnership between Europe and the United States.


News Article | April 20, 2016
Site: phys.org

Following its successful launch and early operations phase, EUMETSAT has been supporting the European Space Agency (ESA) in-orbit commissioning activities, before EUMETSAT takes over routine operations of the spacecraft and processing data at its Sentinel-3 Marine Centre. The Copernicus programme is Europe's response to the challenge of global environment monitoring and climate change. Sentinel-3A will provide systematic measurements of the Earth's oceans, land, ice and atmosphere. It has been described as "the most beautiful satellite ever built" from oceanographers' perspective, with its cutting-edge instruments' ability to provide highly accurate data on the ocean colour, sea surface temperature and sea surface height. These data are crucial for Europe's 500 billion euro a year "blue economy" and will be relied upon by the fishing and aquaculture industries, coastal planners, the marine transport industry, environment and climate scientists and others, in addition to weather and ocean forecasters. The EU has entrusted EUMETSAT to undertake, in cooperation with ESA, routine operations of Sentinel-3A, which was launched on 16 February and is now going through its commissioning phase, and to deliver its marine mission. In addition, EUMETSAT will deliver to Copernicus data from the joint European-US Jason-3 ocean altimetry satellite, which was launched in January this year, as part of an integrated marine data stream, incorporating data from third-party missions of our partners in the US, China and India. Jason-3 will expand until 2021 the unique mean sea-level climate data record, started in 1992 by Topex-Poseidon, and continue to provide the reference ocean surface topography measurements used for cross-calibrating all other altimeter missions, including Sentinel-3, and this data will also soon be available. Sentinel-3A has already delivered impressive first images from its Ocean and Land Colour Instrument, altimeter and Sea and Land Surface Temperature Radiometer and the quality of the products is expected to improve with fine-tuning over the remaining months of the commissioning before EUMETSAT begins routine operations. When Sentinel-3A's marine mission is fully operational, these new, advanced instruments will be sending back to Earth high quality data in vastly increased amounts. EUMETSAT offers users and service providers access to a multi-mission data stream via EUMETCast, a highly-reliable, cost-effective system based on off-the-shelf, commercially available, standard Digital Video Broadcast technology. EUMETCast's highly scalable architecture will provide the near real-time Sentinel-3 data services to an unlimited number of simultaneous users, regardless of the possible limitations of local communication infrastructures. The UK-based European Centre for Medium-range Weather Forecasts (ECMWF), which produces and disseminates numerical weather predictions to its 34 Member States and is both a research institute and operational service, receives more than 50 gigabytes of data via EUMETCast in near real time every day. "EUMETCast delivers the majority of the satellite observations operationally assimilated at ECMWF," ECMWF Head of Evaluation Section David Richardson said. "These are important to the quality of the forecasts in all regions and in those parts of the world where non-satellite observations are scarce the forecast skill would fall dramatically without the observations disseminated by EUMETCast. "EUMETCast provides a very reliable, cost-effective and easy to use mechanism for the near real time delivery of more than 50 gigabytes of satellite data every day. It is an essential component of ECMWF's data reception system. "ECMWF is also making use of the EUMETCast service to broadcast essential weather forecast products to over 50 African countries overcoming the lack of network infrastructure available in this area of the world." "The addition of Sentinel-3A data will complement the already existing marine data stream we have available on EUMETCast" EUMETSAT  User Relations Manager Sally Wannop said: "As a single data access mechanism, EUMETCast is the one-stop-shop to a wide range of environmental data. "The addition of Sentinel-3A data will complement the already existing marine data stream we have available on EUMETCast." In addition, EUMETSAT will disseminate the Sentinel-3A data on-line, via itsCopernicus Online Data Access, and to international partners via EUMETCast Terrestrial, which functions like the satellite service but using a terrestrial network instead. The DVB satellite link is replaced by a connection to a national research network. EUMETCast Terrestrial has the potential to reach users beyond the EUMETCast satellite footprint, for example, in Australia. EUMETSAT is already looking at future evolutions of its data services to users. A series of pathfinder projects, involving hosted processing, new data view capabilities, the creation of a format conversation toolbox and online data platforms, for example, are currently being undertaken. Many of the enhancements arising from these projects will also be applied to the Copernicus data.


News Article | October 31, 2016
Site: www.sciencedaily.com

Serendipity, expertise, foresight and the equivalent of an Earth observation data archaeological dig have led to recovery of almost-40-year-old satellite imagery -- thought lost forever -- which will significantly add to understanding of our planet's climate. The data, from the European Space Agency's prototype Meteosat-1 geostationary meteorological satellite, was found at the University of Wisconsin-Madison's Space Science and Engineering Center (SSEC) in the United States. It has now been provided to EUMETSAT, which operates and disseminates data from Meteosat-1's "descendents" and, crucially, has an uninterrupted record of climate data from these satellites stretching back more than 30 years. That record, although with a small gap, now extends even further back in time. To say that the discovery of this lost data was greeted with enthusiasm would be an understatement, with climate scientists describing it as "like finding a lost child" -- "the first born"! Meteosat-1 was launched on 23 November 1977, and was positioned in a geostationary orbit at 0° degrees longitude, with a constant view of most of Europe, all of Africa, the Middle East and part of South America. From that position, this view of the "full-disk" was scanned every 30 minutes, with the data being provided in near-real time to users. The satellite's mission lasted until 25 November 1979. Meteosat-1 represented cutting-edge technology for its time, introducing the concept of a global system of geostationary platforms capable of observing the atmospheric circulation and weather around the equator in near-real time. It was also the first geostationary meteorological satellite to have a water vapour channel, tracking the motion of moisture in the air. The data found in America comprises 20,790 images, from 1 December 1978 to 24 November 1979. On 27 June 2016, EUMETSAT held an event to celebrate its 30th anniversary, in Darmstadt, Germany. Among the guests was Dr Paul Menzel, Senior Scientist with the Cooperative Institute for Meteorological Satellite Studies, part of the University of Wisconsin-Madison's Space Science and Engineering Center. A memento guests at the event received was a memory stick with links to EUMETSAT's climate data record, from 1 January 1984 up until the anniversary in 2016 -- more than 32 years. "It was pointed out that the data was all there, except for two days, which were missing," Dr Menzel said. "That prompted me to have a look whether we had the data for those two days. When I went back, we started looking for the data but I was told we didn't have any Meteosat data from before 1992. I knew that couldn't be right." The SSEC Data Center didn't have the data for the missing two days but did find something even more valuable. In 1978-79, the First GARP (Global Atmospheric Research Programme) Global Experiment (FGGE) was undertaken -- a project reported by New Scientist at the time as the biggest cooperative international venture ever undertaken. Its aim was to find out which gaps in global weather monitoring could be filled to improve weather forecasting seven to 10 days in advance. Meteosat-1 data was provided to the SSEC for this project. The centre's founder, Verner Suomi, often referred to as the "Father of Satellite Meteorology," had the foresight to recognise the importance of preserving Earth observation data. "I thought we must have the FGGE data," Dr Menzel said. "Vern's mentality was, I don't want to lose any of the data." Dr Menzel's colleague, CIMSS Programme Manager Dr David Santek said teams of experts had worked in three shifts around the clock tracking cloud features in the images from the 1,200 nine-track tapes of Meteosat-1 data that was shipped to them for the FGGE project in 1978-79. "Then those tapes sat around for 20 years," Dr Santek said. "In 1997, we started converting data from old tape media on to more modern media. We could not dispose of those old tapes. "From 2001-2004, new nine-track tape drives were acquired to extract most of the data from the tapes and, over the past 15 years, the original data were stored on disk, although, without any attempt to use it. That's why the old data were able to be found. But finding the data was not the end of the story. The files were stored on disk in the original tape format and needed to be decoded. Dan Forrest, SSEC's Senior Systems Engineer, spent several weeks piecing the files together, dug up old documentation, wrote a decoder and was able to retrieve the data, but it was not quite usable. In another serendipitous twist, Dr Santek was the person who wrote some of the original code and he provided modules for navigating and calibrating the data. Why this data is so important The data from Meteosat-1 will help scientists better understand the climate and how it has changed. EUMETSAT Climate Services and Product Manager Dr Jörg Schulz, said the discovery would not only provide a longer time series of climate data but would be reanalysed and reprocessed using the latest methodology. "It gives us information about the state of Earth's atmosphere from a time when there was less interference from human activity," Dr Menzel added. Dr Schulz said this would help further improve understanding of Earth's climate system. "One of the grand challenges in climate science is to better understand atmospheric circulation in general," Dr Schulz said. "Where is the tropical, warm, moist air going? Where is the polar, cool, dry air going? And how does this change over time? "This data will be very important to support the analysis of position, strength and variability of storm tracks as well as circulation-cloud interactions." The three scientists were keen to stress not only the scientific and historical importance of the data but also how this demonstrates the value of strong collaboration and cooperation. "It's another example of the strong collaboration between SSEC and EUMETSAT and I'm very happy to have found those tapes," Dr Menzel said. "A lot of people were involved," Dr Santek added. "It's history and we are able to make it useful, even though it hasn't been looked at for 30 years." "We are excited about the work done at SSEC and look forward to analysing and improving the data in collaboration with SSEC in the coming years," Dr Schulz concluded. You can see an animation made from one day's worth of imagery from Meteosat-1 on the EUMETSAT YouTube channel: https://www.youtube.com/watch?v=gnN0zrMRYAo


PARIS, 16-Dec-2016 — /EuropaWire/ — A special briefing on SmallGEO, Europe’s versatile small telecom satellite platform, will be held on 18 January, after Director General Jan Woerner’s annual meeting of the press at ESA HQ, Paris. The SmallGEO platform line offers satellite operators an entirely European solution in the smaller telecom satellite market by speeding up the production and testing processes, reducing costs and broadening the range of design options. SmallGEO will be launched on its first mission in the early hours of 28 January on a Soyuz rocket from Europe’s Spaceport in Kourou, French Guiana. It is carrying a telecommunications payload by Hispasat, which marks the first partnership between ESA and a Spanish operator, and will provide flight heritage for the first product by Germany’s OHB System AG as a prime contractor. The launch will also be the first time a Soyuz has lifted a telecom satellite of more than three tonnes into geostationary transfer orbit from Kourou. Named Hispasat 36W-1, it will then take itself into geostationary orbit over 36°W, where it will provide flexible broadband coverage over Europe, the Canary Islands and the Americas. It will do so through its innovative Redsat regenerative processor, which offers better signal quality and speed by independently allocating up to four, reconfigurable beams at once, adapting the beams’ strength and location according to demand. Hispasat 36W-1 is the first satellite to use the processor. Future SmallGEO platforms will carry the second node of the EDRS–SpaceDataHighway laser relay and ESA’s pioneering Electra electric propulsion mission. The briefing will be shared by the Director General, the Director of Telecommunications & Integrated Applications, Magali Vaissiere, the Head of Telecommunications Satellite Programmes, Stéphane Lascar, Carlos Espinós, CEO of Hispasat, Marco Fuchs, CEO of OHB System AG, and Gerd Gruppe, Director of Space Administration at the DLR German Aerospace Center. It will be followed by a 20 minute Q&A session. The event will take place 11:30–12:30 CET at ESA headquarters: 8 rue Mario Nikis, 75015 Paris, France. Media representatives wishing to attend are requested to register at https://myconvento.com/public/event_register/index/1535923 The news conference will be livestreamed at www.esa.int. Media and the public may ask questions during the briefing on Twitter using the hashtag #askSmallGEO or by tweeting to @ESA. The European Space Agency (ESA) provides Europe’s gateway to space. ESA is an intergovernmental organisation, created in 1975, with the mission to shape the development of Europe’s space capability and ensure that investment in space delivers benefits to the citizens of Europe and the world. ESA has 22 Member States: Austria, Belgium, the Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Luxembourg, the Netherlands, Norway, Poland, Portugal, Romania, Spain, Sweden, Switzerland and the United Kingdom. Slovenia is an Associate Member. ESA has established formal cooperation with six other Member States of the EU. Canada takes part in some ESA programmes under a Cooperation Agreement. By coordinating the financial and intellectual resources of its members, ESA can undertake programmes and activities far beyond the scope of any single European country. It is working in particular with the EU on implementing the Galileo and Copernicus programmes as well as with EUMETSAT for the development of meteorological missions. ESA develops the launchers, spacecraft and ground facilities needed to keep Europe at the forefront of global space activities. Today, it develops and launches satellites for Earth observation, navigation, telecommunications and astronomy, sends probes to the far reaches of the Solar System and cooperates in the human exploration of space. ESA also has a strong applications programme developing services in the Earth observation, navigation and telecommunications domain. For further information, please contact:


Grant
Agency: GTR | Branch: NERC | Program: | Phase: Research Grant | Award Amount: 276.66K | Year: 2016

Large thunderstorms are one of the most damaging of weather phenomena. Hail can devastate crops, flash flooding can inundate towns and homes, lightning can threaten people and ignite fires, and strong gusts can damage transport and infrastructure. Convective storms and associated phenomena cause 5-8 billion euro per year in damage across Europe. Such storms have the potential to be forecast and the public warned beforehand, but forecasting becomes increasingly difficult as the length of a forecast increases. In the near-term, observations and high-resolution computer modelling can provide adequate warning of impending storms, but for periods longer than three days ahead the outbreak of thunderstorms has to be deduced indirectly from the computer forecast even if the large-scale flow is well forecasted. The aim of this project is to improve our understanding of the relationship between thunderstorms (also called convective storms) and the larger-scale environment in the atmosphere, to provide better understanding of the physical processes responsible to aid forecasters in interpreting the model predictions. Convective storms require three ingredients: sufficient moisture to condense and fuel the storm, instability or the rate at which temperature decreases with height (temperature dropping quickly with height is better), and something to lift air to release the instability. In this proposal, we focus on the instability ingredient. In the United States, environments with large instability are believed to occur because of heating over the elevated terrain of the western United States, resulting in the elevated mixed-layer (EML). In Europe, EMLs are attributed to passage over the elevated terrain of central Spain, resulting in the Spanish plume. Such sensible heating of lower-tropospheric air (3-5 km above sea level) by an elevated heat source such as the Rockies or Spanish plateau is a natural explanation for the steep lapse rates in the EML. How much of a contribution is the elevated heating to the formation of instability? The smaller scale of the Spanish high terrain compared to the Rocky Mountains makes it difficult to imagine that the Spanish high terrain creates such large instability. One hypothesis for the origin of the steep lapse rates is the Sahara Desert, where a well-mixed boundary layer forms steep lapse rates that can be advected away from northern Africa (known as the Saharan Air Layer). Yet, this hypothesis has not been tested, either for the Spanish plume or other regions downstream of high heated terrain. A different factor said to explain the occurrence of instability is the differential transport of air with low temperature or low moisture aloft. Although such explanations have been used in the literature, other studies have questioned the applicability of this factor. Our proposed research asks what processes produce the environment for midlatitude convective storms around the globe. What environments are favourable for instability, and how does this differ around the globe? What are the physical processes that create instability? Is instability - in Europe generally and the UK specifically - attributed to elevated heating, as in the EML of the central United States or by long-range transport? Despite conventional wisdom stating that the elevated mixed layer is responsible for creating the instability downstream of high terrain, it remains untested. Our aim in this proposal is to develop a better understanding of the relationship between high terrain, large-scale processes, and instability for midlatitude convective storms. These concerns motivate a multifaceted research project to answer these questions. Q1: What are the physical processes responsible for creating instability? Q2: How does topography create a favourable environment for deep moist convection? Q3: How important is differential temperature and moisture advection to creating instability?


Von Engeln A.,EUMETSAT | Teixeira J.,Jet Propulsion Laboratory
Journal of Climate | Year: 2013

A planetary boundary layer (PBL) height climatology from ECMWF reanalysis data is generated and analyzed. Different methods are first compared to derive PBL heights from atmospheric temperature, pressure, and relative humidity (RH), which mostly make use of profile gradients, for example, in RH, refractivity, and virtual or potential temperature. Three methods based on the vertical gradient of RH, virtual temperature, and potential temperature were selected for the climatology generation. The RH-based method appears to capture the inversion that caps the convective boundary layer very well as a result of its temperature and humidity dependence, while the temperature-based methods appear to capture the PBL better at high latitudes. A validation of the reanalysis fields with collocated radiosonde data shows generally good agreement in terms of mean PBL height and standard deviation for the RH-based method. The generated ECMWF-based PBL height climatology shows many of the expected climatological features, such as a fairly low PBL height near the west coast of continents where stratus clouds are found and PBL growth as the air is advected over warmer waters toward the tropics along the trade winds. Large seasonal and diurnal variations are primarily found over land. The PBL height can exceed 3 km, mostly over desert areas during the day, although large values can also be found in areas such as the ITCZ. The robustness of the statistics was analyzed by using information on the percentage of outliers. Here in particular, the sea-based PBL was found to be very stable. © 2013 American Meteorological Society.

Loading EUMETSAT collaborators
Loading EUMETSAT collaborators