Time filter

Source Type

Zurich, Switzerland

ETH Zürich is an engineering, science, technology, mathematics and management university in the city of Zürich, Switzerland. Like its sister institution Swiss Federal Institute of Technology in Lausanne , it is an integral part of the Swiss Federal Institutes of Technology Domain that is directly subordinate to Switzerland's Federal Department of Economic Affairs, Education and Research.ETH Zürich is consistently rated among the top universities in the world. It is currently ranked 4th in Europe overall, and 3rd best university in the world in engineering, science and technology. Twenty-one Nobel Prizes have been awarded to students or professors of the Institute in the past, the most famous of which is Albert Einstein in 1921, and the most recent is Richard F. Heck in 2010. It is a founding member of the IDEA League and the International Alliance of Research Universities and a member of the CESAER network.The school was founded by the Swiss Federal Government in 1854 with the stated mission to educate engineers and scientists, serve as a national center of excellence in science and technology and provide a hub for interaction between the scientific community and industry. Wikipedia.

Kornmann B.,ETH Zurich
Current Opinion in Cell Biology | Year: 2013

A long-observed but often neglected property of cellular organelles is their ability to associate into junctions. Aspects of cell physiology appear more and more to depend upon these contact sites, as their central molecular components are being identified. Contact sites between the endoplasmic reticulum (ER) and the mitochondria are emerging as a prime example of such contacts. The physiological role of these contact sites, first thought to be limited to the facilitation of lipid and calcium exchange between the two organelles, is found to extend to unexpected aspects of mitochondria and ER functions. © 2013 Elsevier Ltd. Source

Hilvert D.,ETH Zurich
Annual Review of Biochemistry | Year: 2013

Diverse engineering strategies have been developed to create enzymes with novel catalytic activities. Among these, computational approaches hold particular promise. Enzymes have been computationally designed to promote several nonbiological reactions, including a Diels-Alder cycloaddition, proton transfer, multistep retroaldol transformations, and metal-dependent hydrolysis of phosphotriesters. Although their efficiencies (kcat/KM =0.1-100 M -1 s-1) are typically low compared with those of the best natural enzymes (106-108 M-1 s-1), these catalysts are excellent starting points for laboratory evolution. This review surveys recent progress in combining computational and evolutionary approaches to enzyme design, together with insights into enzyme function gained from studies of the engineered catalysts. © 2013 by Annual Reviews. All rights reserved. Source

Benenson Y.,ETH Zurich
Nature Reviews Genetics | Year: 2012

The task of information processing, or computation, can be performed by natural and man-made 'devices'. Man-made computers are made from silicon chips, whereas natural 'computers', such as the brain, use cells and molecules. Computation also occurs on a much smaller scale in regulatory and signalling pathways in individual cells and even within single biomolecules. Indeed, much of what we recognize as life results from the remarkable capacity of biological building blocks to compute in highly sophisticated ways. Rational design and engineering of biological computing systems can greatly enhance our ability to study and to control biological systems. Potential applications include tissue engineering and regeneration and medical treatments. This Review introduces key concepts and discusses recent progress that has been made in biomolecular computing. © 2012 Macmillan Publishers Limited. All rights reserved. Source

Haller G.,ETH Zurich
Annual Review of Fluid Mechanics | Year: 2015

Typical fluid particle trajectories are sensitive to changes in their initial conditions. This makes the assessment of flow models and observations from individual tracer samples unreliable. Behind complex and sensitive tracer patterns, however, there exists a robust skeleton of material surfaces, Lagrangian coherent structures (LCSs), shaping those patterns. Free from the uncertainties of single trajectories, LCSs frame, quantify, and even forecast key aspects of material transport. Several diagnostic quantities have been proposed to visualize LCSs. More recent mathematical approaches identify LCSs precisely through their impact on fluid deformation. This review focuses on the latter developments, illustrating their applications to geophysical fluid dynamics. Copyright © 2015 by Annual Reviews. All rights reserved. Source

VirtaMed and ETH Zurich | Date: 2015-02-06

Simulation systems and methods may enable virtual imaging. A data processing unit may receive data from a calibration unit indicating a position and/or orientation of a position and orientation sensor relative to a physical model. The data processing unit may also receive data from the position and orientation sensor indicating a position and/or orientation of the physical model. The data processing unit may generate a virtual image using the data from the position and orientation sensor and the data from the calibration unit. The data processing unit may render the virtual image to a display.

Discover hidden collaborations