Time filter

Source Type

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: PHC-15-2014 | Award Amount: 6.00M | Year: 2015

Osteoarthritis (OA) is an incurable disease that has evaded pharmacological interference, biologic therapy or surgical intervention to prevent disease progression. Currently, OA is designated the 11th highest contributor (of 291 diseases) of global disability. In the absence of effective treatment options, cellular therapies using mesenchymal stem/stromal cells (MSCs) have emerged as potential candidates to overcome this clinical short-coming. Autologous adipose-derived mesenchymal stromal cells (ASCs) are attractive for cellular therapy given the abundance of tissue, high frequency of MSCs and minimally invasive harvest procedure. The EU consortium ADIPOA has shown in a first in man 2-centre Phase I safety study that intraarticular injection of a single dose of autologous ASCs to the knee (18 patients, 12 month follow-up) was well-tolerated, had no adverse effects, and resulted in an improvement in pain score and functional outcome. ADIPOA2 will deliver a large-scale clinical trial in regenerative medicine for OA. The purpose of the project is to design and implement a phase IIb study to assess the safety and efficacy of autologous (patient-derived) ACSs in the treatment of advanced OA of the knee. The cells will be prepared from samples of adipose tissue harvested from patients by lipoaspiration. ADIPOA2 will comprise a multi-centre, randomized clinical trial comparing culture-expanded, autologous adult ASCs in subjects with knee OA with another widely used therapeutic approach for knee degeneration (injection of Hyaluronan). There are two large elements of the study: (1) the production of consistent batches of high-quality autologous ASCs under GMP-compliant conditions and (2) delivery of these cell doses to patients in a trial which will meet all national and European regulatory and ethical standards and which will have sufficient statistical power to provide an unambiguous and definitive assessment of safety and efficacy.

Etablissement Francais Du Sang and Maco Pharma | Date: 2013-10-09

A method for preserving whole placental blood comprising introducing whole placental blood into an air barrier storage bag, storing said bag containing whole placental blood at a temperature of more than 0 C. and less than 40 C., so as to preserve the whole placental blood.

Jean Monnet University, Ecole Nationale Superieure des Mines de Saint - Etienne CMP and Etablissement Francais Du Sang | Date: 2013-03-14

A device for the storage of a corneal specimen has means for the reception and entrapment of a corneal specimen, connected to the means for the creation of a pressure gradient with overpressure on the endothelial side and to the preservation medium circulation means in the layouts that present the means for the reception and entrapment of the cornea specimen. The means for the reception and entrapment of the corneal specimen entrap the sclera ciliary zone surrounding the cornea in an airtight manner to delimit a separate endothelial chamber and epithelial chamber in which the preservation medium can circulate with an overpressure in the endothelial chamber; The intermediate component and the endothelial lid comprise inlet and outlet orifices for the preservation medium which are connected to the means for the circulation of the preservation medium and the creation of a pressure gradient between the endothelial chamber and the epithelial chamber with overpressure in the endothelial chamber.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: NMP-10-2014 | Award Amount: 8.00M | Year: 2015

The key therapeutic issue in diabetes mellitus type I and II is glycaemic control. Reductions of constant self-control, of insulin injections, and of long-term complications would have tremendous benefit for quality of life. The best therapy option is the transplantation of allogeneic islet cells, but the current state of the art limits the applicability of this approach. Implanting unprotected grafts requires lifelong administration of immunosuppressants, and protecting the cells against adverse immune reactions by current encapsulation strategies reduces their functionality and survival to an extend that makes frequent refresher implantations necessary. Currently, a maximum of 2 years glycaemia regulation has been shown for the encapsulated approach. In BIOCAPAN, bringing experts from different fields all together, we aim at developing an innovative treatment, based on the implantation of allogeneic islet cells that are embedded in a complex microcapsule. We will design a GMP-grade bioactive microcapsule that will maximize the long-term functionality and survival of pancreatic islets by prevention of pericapsular fibrotic overgrowth, in situ oxygenation, innovative extracellular matrix microenvironment reconstruction and immune-system modulation. We will establish a GMP-grade microfluidic microencapsulation platform to protect freshly harvested islets quickly in a standardized and reproducible way. We aim for full preclinical validation and we will establish a complete protocol in accordance with the provisions of the Advanced Therapy Medicinal Products Regulation, in order to start clinical trials within one year after the end of the project. We aim for 5-years insulin injection free treatment, without immunosuppressants, which would tremendously benefit diabetes mellitus patients who require insulin (all Type I and about one in six Type II Diabetes Mellitus patients).

Etablissement Francais Du Sang and French Atomic Energy Commission | Date: 2010-11-23

The invention relates to the use of at least one isoform of HLA-G as a marker for assessing osteogenesis in mammals.

Discover hidden collaborations