ESTEVE

Monistrol de Montserrat, Spain
Monistrol de Montserrat, Spain
SEARCH FILTERS
Time filter
Source Type

The new research project NGN-PET was launched in the framework of the Innovative Medicine Initiative (IMI), the largest public-private partnership (PPP) for health research worldwide co-funded by the EU and the European pharmaceutical industry. The NGN-PET consortium unites the expertise and knowledge of industry partners from the European Federation of Pharmaceutical Industries and Associations (EFPIA), small and medium-sized enterprises (SMEs) and academia. Together they will investigate neuron-glia interactions aiming to develop authentic cellular (co-culture) assays to discover improved treatments of neuropathic pain using neuronal and glial cell types derived from human induced pluripotent stem cells (iPSC), and their co-cultures. The primary objective is to provide a translational platform for the identification, validation and testing of neuropathic pain targets in preclinical and human-relevant test systems suitable for drug discovery. Chronic pain is a serious debilitating disease which greatly reduces the quality of life for the individual patients. In Europe, 20% of the population are affected which causes considerable socioeconomic burden of over 200 bn € per year[1]. Chronic pain of neuropathic origin has a population prevalence of 8.2%[2]. Neuropathic pain arises after insults such as surgery, trauma, diabetes, chemotherapy or viral infections, and its prevalence is expected to rise in the future due to the ageing society. Current treatments for chronic pain have limited efficacy, leaving about 60% of patients without adequate pain relief[1]. Moreover, these therapies address only symptoms not the causes of the pain, and are therefore not curative. In fact, the aetiologies of the disease are poorly understood which hinders the development of new analgesics with improved efficacies. One of the major findings of the last decade in pain research is that non-neuronal cells play a very active role in the development of sensory abnormalities. In particular, glia - like Schwann cells, microglia, or astrocytes - contribute directly to modulation of neuronal functions. The NGN-PET consortium aims to explore neuron-glial interactions in subtypes of neuropathic pain which are induced by chemotherapy or trauma, and to develop human-predictive test systems that can be implemented in the drug discovery process. These cellular systems will use preclinical tissues and human iPSC-derived neuron-glia co-cultures in novel high-throughput screening platforms. We hope this new science helps in identifying novel more efficacious treatments for neuropathic pain patients. To achieve these ambitious goals, a consortium of 6 partners, with the support of IMI, has been formed. NGN-PET brings together experts from industry, SMEs and academia in a synergistic public-private partnership. NGN-PET is supported by over 3million euros from IMI2 and industry partners in direct and in-kind contributions. The project duration is 3 years. The consortium will disseminate the results through publication in high-impact scientific journals, applying open access policy whenever possible, or in scientific meetings by means of poster or oral presentations. Online outreach of the project publications will be performed via the project website. The NGN-PET project is coordinated by Axxam; the project leader is ESTEVE, supported by Grünenthal as project Co-Leader. Axxam is an innovative Partner Research Organization (iPRO) based in Milan, Italy. Axxam is a leading provider of integrated discovery services across Life Sciences industries including: pharmaceuticals, crop protection, animal health, cosmetics, fragrances, food and beverages. The company has consolidated expertise across a broad range of discovery disciplines and innovative technologies including: assay development, high-throughput screening of both the Axxam high quality compound collections (synthetic and natural) or those provided by our clients, compound management, hit identification and hit validation. Axxam  performance-driven approach has been recognized by the clients as key to the success for their discovery programs.  Axxam is also engaged in alliance-based research towards innovative small molecule therapies for diseases with a high unmet medical need. Axxam's business terms are flexible, ranging from fee-for-service to risk-sharing deal structures. LIFE & BRAIN GmbH is a biomedical enterprise founded in 2002 and located at the University Hospital Campus in Bonn, Germany.  As a center of innovation, LIFE & BRAIN acts as a revolving door between academic research and industry. Innovative research results are recognized early and developed further into marketable biomedical products and services. Its mission is to discover and develop novel strategies for the diagnosis and therapy of nervous system disorders. A key focus of LIFE & BRAIN is the development and provision of human pluripotent stem cell-based tools and services for neurological disease modeling and drug discovery. Within the project LIFE & BRAIN will provide induced pluripotent stem cell-derived glial and neuronal populations to model the neuron-glia network in neuropathological pain conditions. King's College London is one of the top 25 universities in the world (2016/17 QS World University Rankings) and among the oldest in England. Research at King's has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and work that led to the development of radio, television, mobile phones and radar. King's has more than 26,500 students from some 150 countries world-wide and nearly 6,900 staff. The university has an outstanding reputation for world-class teaching and cutting-edge research. King's was ranked 6th nationally in the 2014 Research Excellence Framework (REF) and is in the top seven UK universities for research earnings with an overall annual income of more than £600 million. The Natural and Medical Sciences Institute at the University of Tübingen (NMI) is a member of the Innovation Alliance Baden-Württemberg. Its main activities focus on application-oriented research at the interface between life and material sciences. In addition, it also operates as business incubator for start-up companies. NMI unique and interdisciplinary spectrum of skills and competencies, supported by a strong team of more than 150 scientists, provides an ideal research environment where innovative technologies are brought together for the benefit of public stakeholders and industry. A broad range of thematic areas are covered across several departments and laboratories: - Pharma & biotechnology: targets and biomarkers for the identification of active compounds, electrophysiology, diagnostics and bio-analytics Esteve is a leading pharmaceutical chemical group based in Barcelona, Spain. Since it was founded in 1929, Esteve has been firmly committed to excellence in healthcare, dedicating efforts to innovative R&D of new medicines for unmet medical needs and focusing on high science and evidence‐based research. Esteve has a strong partnership approach to drug discovery, development and commercialisation. The company works both independently and in collaboration to bring new, differentiated best‐in‐class treatments to patients. The company currently employs 2,300 professionals and has subsidiaries and production facilities in several European countries, USA, China and Mexico. The Grünenthal Group is an entrepreneurial, science-based pharmaceutical company specialized in pain, gout and inflammation. Our ambition is to deliver four to five new products to patients in diseases with high unmet medical need by 2022 and become a €2 billion company. We are a fully integrated research & development company with a long track record of bringing innovative pain treatments and state-of-the-art technologies to patients. By sustainably investing in our R&D above the industrial average, we are strongly committed to innovation. Grünenthal is an independent, family-owned company headquartered in Aachen, Germany. We are present in 32 countries with affiliates in Europe, Latin America and the US. Our products are sold in more than 155 countries and approx. 5,500 employees are working for the Grünenthal Group worldwide. In 2016, Grünenthal achieved revenues of approx. € 1.4 bn. The Innovative Medicines Initiative (IMI) is working to improve health by speeding up the development of, and patient access to, the next generation of medicines, particularly in areas where there is an unmet medical or social need. It does this by facilitating collaboration between the key players involved in healthcare research, including universities, pharmaceutical companies, and other companies active in healthcare research, small and medium-sized enterprises (SMEs), patient organisations, and medicines regulators. This approach has proven highly successful, and IMI projects are delivering exciting results that are helping to advance the development of urgently-needed new treatments in diverse areas. IMI is a partnership between the European Union and the European pharmaceutical industry, represented by the European Federation of Pharmaceutical Industries and Associations (EFPIA). Through the IMI 2 programme, IMI has a budget of 3.3 bn € for the period 2014-2024. Half of this comes from the EU's research and innovation programme, Horizon 2020. The other half comes from large companies, mostly from the pharmaceutical sector; these do not receive any EU funding, but contribute to the projects 'in kind', for example by donating their researchers' time or providing access to research facilities or resources. This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116072. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA Companies. [1]  van Hecke O, Torrance N, Smith BH. Chronic pain epidemiology and its clinical relevance. Br J Anaesth. 2013; 111(1):13-8. [2]  Torrance N, Smith BH, Bennett MI, Lee AJ. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain. 2006 Apr;7(4):281-9.


Patent
Esteve | Date: 2017-03-08

A dry powder inhaler for a capsule containing dry powder, the inhaler comprising a base body having a capsule receptacle, two actuator buttons arranged on opposing sides of the base body and two perforation needles, each needle being fixedly connected to an actuator button and movable relative to the base body towards each other from a normal position to a perforation position along an actuation direction to perforate a capsule arranged in the capsule receptacle, wherein the capsule receptacle is arranged in an inclined angle within the range of about 40 to about 50 with respect to the actuation direction.


Patent
Esteve | Date: 2017-03-08

A dry powder inhaler for a capsule containing dry powder, the inhaler comprising a housing having a capsule receptacle, two actuator buttons arranged on opposing sides of the housing and two perforation needles, each needle being fixedly connected to an actuator button and movable relative to the housing towards each other from a normal position to a perforation position along an actuation direction to perforate a capsule arranged in the capsule receptacle, wherein a first end of each actuator button is connected to the housing at a lower portion of the housing and in that a second free end of each actuator button is movable into the perforation position such that the perforation needle is moved along a circular line.


The new research project NGN-PET was launched in the framework of the Innovative Medicine Initiative (IMI), the largest public-private partnership (PPP) for health research worldwide co-funded by the EU and the European pharmaceutical industry. The NGN-PET consortium unites the expertise and knowledge of industry partners from the European Federation of Pharmaceutical Industries and Associations (EFPIA), small and medium-sized enterprises (SMEs) and academia. Together they will investigate neuron-glia interactions aiming to develop authentic cellular (co-culture) assays to discover improved treatments of neuropathic pain using neuronal and glial cell types derived from human induced pluripotent stem cells (iPSC), and their co-cultures. The primary objective is to provide a translational platform for the identification, validation and testing of neuropathic pain targets in preclinical and human-relevant test systems suitable for drug discovery. Chronic pain is a serious debilitating disease which greatly reduces the quality of life for the individual patients. In Europe, 20% of the population are affected which causes considerable socioeconomic burden of over 200 bn € per year[1]. Chronic pain of neuropathic origin has a population prevalence of 8.2%[2]. Neuropathic pain arises after insults such as surgery, trauma, diabetes, chemotherapy or viral infections, and its prevalence is expected to rise in the future due to the ageing society. Current treatments for chronic pain have limited efficacy, leaving about 60% of patients without adequate pain relief[1]. Moreover, these therapies address only symptoms not the causes of the pain, and are therefore not curative. In fact, the aetiologies of the disease are poorly understood which hinders the development of new analgesics with improved efficacies. One of the major findings of the last decade in pain research is that non-neuronal cells play a very active role in the development of sensory abnormalities. In particular, glia - like Schwann cells, microglia, or astrocytes - contribute directly to modulation of neuronal functions. The NGN-PET consortium aims to explore neuron-glial interactions in subtypes of neuropathic pain which are induced by chemotherapy or trauma, and to develop human-predictive test systems that can be implemented in the drug discovery process. These cellular systems will use preclinical tissues and human iPSC-derived neuron-glia co-cultures in novel high-throughput screening platforms. We hope this new science helps in identifying novel more efficacious treatments for neuropathic pain patients. To achieve these ambitious goals, a consortium of 6 partners, with the support of IMI, has been formed. NGN-PET brings together experts from industry, SMEs and academia in a synergistic public-private partnership. NGN-PET is supported by over 3million euros from IMI2 and industry partners in direct and in-kind contributions. The project duration is 3 years. The consortium will disseminate the results through publication in high-impact scientific journals, applying open access policy whenever possible, or in scientific meetings by means of poster or oral presentations. Online outreach of the project publications will be performed via the project website. The NGN-PET project is coordinated by Axxam; the project leader is ESTEVE, supported by Grünenthal as project Co-Leader. Axxam is an innovative Partner Research Organization (iPRO) based in Milan, Italy. Axxam is a leading provider of integrated discovery services across Life Sciences industries including: pharmaceuticals, crop protection, animal health, cosmetics, fragrances, food and beverages. The company has consolidated expertise across a broad range of discovery disciplines and innovative technologies including: assay development, high-throughput screening of both the Axxam high quality compound collections (synthetic and natural) or those provided by our clients, compound management, hit identification and hit validation. Axxam  performance-driven approach has been recognized by the clients as key to the success for their discovery programs.  Axxam is also engaged in alliance-based research towards innovative small molecule therapies for diseases with a high unmet medical need. Axxam's business terms are flexible, ranging from fee-for-service to risk-sharing deal structures. LIFE & BRAIN GmbH is a biomedical enterprise founded in 2002 and located at the University Hospital Campus in Bonn, Germany.  As a center of innovation, LIFE & BRAIN acts as a revolving door between academic research and industry. Innovative research results are recognized early and developed further into marketable biomedical products and services. Its mission is to discover and develop novel strategies for the diagnosis and therapy of nervous system disorders. A key focus of LIFE & BRAIN is the development and provision of human pluripotent stem cell-based tools and services for neurological disease modeling and drug discovery. Within the project LIFE & BRAIN will provide induced pluripotent stem cell-derived glial and neuronal populations to model the neuron-glia network in neuropathological pain conditions. King's College London is one of the top 25 universities in the world (2016/17 QS World University Rankings) and among the oldest in England. Research at King's has played a major role in many of the advances that have shaped modern life, such as the discovery of the structure of DNA and work that led to the development of radio, television, mobile phones and radar. King's has more than 26,500 students from some 150 countries world-wide and nearly 6,900 staff. The university has an outstanding reputation for world-class teaching and cutting-edge research. King's was ranked 6th nationally in the 2014 Research Excellence Framework (REF) and is in the top seven UK universities for research earnings with an overall annual income of more than £600 million. The Natural and Medical Sciences Institute at the University of Tübingen (NMI) is a member of the Innovation Alliance Baden-Württemberg. Its main activities focus on application-oriented research at the interface between life and material sciences. In addition, it also operates as business incubator for start-up companies. NMI unique and interdisciplinary spectrum of skills and competencies, supported by a strong team of more than 150 scientists, provides an ideal research environment where innovative technologies are brought together for the benefit of public stakeholders and industry. A broad range of thematic areas are covered across several departments and laboratories: - Pharma & biotechnology: targets and biomarkers for the identification of active compounds, electrophysiology, diagnostics and bio-analytics Esteve is a leading pharmaceutical chemical group based in Barcelona, Spain. Since it was founded in 1929, Esteve has been firmly committed to excellence in healthcare, dedicating efforts to innovative R&D of new medicines for unmet medical needs and focusing on high science and evidence‐based research. Esteve has a strong partnership approach to drug discovery, development and commercialisation. The company works both independently and in collaboration to bring new, differentiated best‐in‐class treatments to patients. The company currently employs 2,300 professionals and has subsidiaries and production facilities in several European countries, USA, China and Mexico. The Grünenthal Group is an entrepreneurial, science-based pharmaceutical company specialized in pain, gout and inflammation. Our ambition is to deliver four to five new products to patients in diseases with high unmet medical need by 2022 and become a €2 billion company. We are a fully integrated research & development company with a long track record of bringing innovative pain treatments and state-of-the-art technologies to patients. By sustainably investing in our R&D above the industrial average, we are strongly committed to innovation. Grünenthal is an independent, family-owned company headquartered in Aachen, Germany. We are present in 32 countries with affiliates in Europe, Latin America and the US. Our products are sold in more than 155 countries and approx. 5,500 employees are working for the Grünenthal Group worldwide. In 2016, Grünenthal achieved revenues of approx. € 1.4 bn. The Innovative Medicines Initiative (IMI) is working to improve health by speeding up the development of, and patient access to, the next generation of medicines, particularly in areas where there is an unmet medical or social need. It does this by facilitating collaboration between the key players involved in healthcare research, including universities, pharmaceutical companies, and other companies active in healthcare research, small and medium-sized enterprises (SMEs), patient organisations, and medicines regulators. This approach has proven highly successful, and IMI projects are delivering exciting results that are helping to advance the development of urgently-needed new treatments in diverse areas. IMI is a partnership between the European Union and the European pharmaceutical industry, represented by the European Federation of Pharmaceutical Industries and Associations (EFPIA). Through the IMI 2 programme, IMI has a budget of 3.3 bn € for the period 2014-2024. Half of this comes from the EU's research and innovation programme, Horizon 2020. The other half comes from large companies, mostly from the pharmaceutical sector; these do not receive any EU funding, but contribute to the projects 'in kind', for example by donating their researchers' time or providing access to research facilities or resources. This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under grant agreement No 116072. This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and EFPIA Companies. [1]  van Hecke O, Torrance N, Smith BH. Chronic pain epidemiology and its clinical relevance. Br J Anaesth. 2013; 111(1):13-8. [2]  Torrance N, Smith BH, Bennett MI, Lee AJ. The epidemiology of chronic pain of predominantly neuropathic origin. Results from a general population survey. J Pain. 2006 Apr;7(4):281-9.


ESTEVE, a leading chemical-pharmaceutical group, invests heavily in the research & development of new formulations, and commercializes medicine and innovative formulations in order to achieve a high level of excellence in the healthcare market.


Zamanillo D.,Esteve | Romero L.,Esteve | Merlos M.,Esteve | Vela J.M.,Esteve
European Journal of Pharmacology | Year: 2013

Sigma 1 receptor (σ1 receptor) is a unique ligand-regulated molecular chaperone located mainly in the endoplasmic reticulum and the plasma membrane. σ1 receptor is activated under stress or pathological conditions and interacts with several neurotransmitter receptors and ion channels to modulate their function. The effects reported preclinically with σ1 receptor ligands are consistent with a role for σ1 receptor in central sensitization and pain hypersensitivity and suggest a potential therapeutic use of σ1 receptor antagonists for the management of neuropathic pain as monotherapy. Moreover, data support their use in opioid adjuvant therapy: combination of σ1 recemptor antagonists and opioids results in potentiation of opioid analgesia, without significant increases in opioid-related unwanted effects. Results from clinical trials using selective σ1 receptor antagonists in several pain conditions are eagerly awaited to ascertain the potential of σ1 receptor modulation in pain therapy. © 2013 Elsevier B.V. All rights reserved.


Kendall I.,University of Nottingham | Slotten H.A.,University of Nottingham | Codony X.,ESTEVE | Burgueno J.,ESTEVE | And 3 more authors.
Psychopharmacology | Year: 2011

Rationale and objectives: In rats, 5-hydroxytryptamine6 (5-HT6) receptor antagonists improve learning and memory, but the effects of agonists are poorly defined. This study investigated the effects of 5-HT6 receptor agonists and antagonists on a rodent model of recognition memory. Methods: Selective 5-HT6 receptor agonists and antagonists were administered either alone, after a scopolamine-induced impairment, or combined with sub-effective doses of the acetylcholinesterase inhibitor, donepezil, or the glutamate NMDA receptor antagonist, memantine, in a novel object discrimination paradigm in adult rats. Results: After a 4-h inter-trial delay to induce natural forgetting, vehicle-treated rats spent an equivalent time exploring novel and familiar objects during the choice trial. The 5-HT6 receptor agonists, E-6801 (1.25-10 mg/kg i.p.) and EMD-386088 (5-10 mg/kg i.p.), and antagonists, SB-271046 and Ro 04-6790 (5 and 10 mg/kg), along with donepezil (0.1-3 mg/kg) and memantine (5-20 mg/kg) all produced significant and mostly dose-dependent increases in novel object exploration, indicative of memory enhancement. Furthermore, sub-effective doses of E-6801 (1 mg/kg) when co-administered with either SB-271046 (3 mg/kg), donepezil (0.1 mg/kg) or memantine (5 mg/kg), and EMD-386088 (2 mg/kg) co-administered with SB-271046 (3 mg/kg) also significantly enhanced object-recognition memory. Additionally, using a 1-min inter-trial delay, E-6801 (2.5 and 5 mg/kg) was as effective as donepezil (0.3 and 1 mg/kg) in reversing a scopolamine-induced (0.5 mg/kg) impairment in object recognition. Conclusions: This is the first study to demonstrate that E-6801, a potent 5-HT6 receptor agonist, improves recognition memory by combined modulation of cholinergic and glutamatergic neurotransmission. © 2011 Springer-Verlag.


Gonzalez-Cano R.,University of Granada | Merlos M.,Esteve | Baeyens J.M.,University of Granada | Cendan C.M.,University of Granada
Anesthesiology | Year: 2013

Background: Visceral pain is an important and prevalent clinical condition whose treatment is challenging. Sigma-1 (σ1) receptors modulate somatic pain, but their involvement in pure visceral pain is unexplored. Methods: The authors evaluated the role of σ1 receptors in intracolonic capsaicin-induced visceral pain (pain-related behaviors and referred mechanical hyperalgesia to the abdominal wall) using wild-type (WT) (n = 12 per group) and σ1 receptor knockout (σ1- KO) (n = 10 per group) mice, selective σ1 receptor antagonists (BD-1063, S1RA, and NE-100), and control drugs (morphine and ketoprofen). Results: The intracolonic administration of capsaicin (0.01-1%) induced concentration-dependent visceral pain-related behaviors and referred hyperalgesia in both WT and σ1-KO mice. However, the maximum number of pain-related behaviors induced by 1% capsaicin in σ1- KO mice (mean ± SEM, 22 ± 2.9) was 48% of that observed in WT animals (46 ± 4.2). Subcutaneous administration of the σ1 receptor antagonists BD-1063 (16-64 mg/kg), S1RA (32-128 mg/kg), and NE-100 (8-64 mg/kg) dose-dependently reduced the number of behavioral responses (by 53, 62, and 58%, respectively) and reversed the referred hyperalgesia to mechanical control threshold (0.53 ± 0.05 g) in WT mice. In contrast, these drugs produced no change in σ1-KO mice. Thus, the effects of these drugs are specifically mediated by σ1 receptors. Morphine produced an inhibition of capsaicin-induced visceral pain in WT and σ1-KO mice, whereas ketoprofen had no effect in either mouse type. Conclusion: These results suggest that σ1 receptors play a role in the mechanisms underlying capsaicin-induced visceral pain and raise novel perspectives for their potential therapeutic value. © 2013, the American Society of Anesthesiologists, Inc. Lippincott Williams & Wilkins.


Pallicer J.M.,University of Barcelona | Calvet C.,ESTEVE | Port A.,ESTEVE | Roses M.,University of Barcelona | And 2 more authors.
Journal of Chromatography A | Year: 2012

A reorted chromatographic method to determine the 1-octanol/water partition coefficient (logP o/w) has been used to estimate the lipophilicity of 33 drugs with diverse structures and functionalities, including neutral, acid, basic, and amphoteric compounds. The applicability of the chromatographic method has been extended to the UHPLC technique, and the results obtained were compared to those obtained from conventional HPLC. No significant difference between the results obtained by both techniques is noticed. Thus, the suitability of UHPLC, which involves shorter run times, for lipophilicity assessment is demonstrated. In order to show the consistency of this chromatographic method, the logP o/w values of those drugs which have acid-base properties have been also determined by potentiometry, and the final results have been compared with both values derived from the chromatographic method and the ones from the literature. © 2012 Elsevier B.V.


Vela J.M.,ESTEVE | Merlos M.,ESTEVE | Almansa C.,ESTEVE
Expert Opinion on Investigational Drugs | Year: 2015

Introduction: The sigma-1 receptor (σ1R) is a ligand-regulated molecular chaperone that interacts with other proteins, including NMDA and opioid receptors, to modulate their activity. Convergent evidence indicates that σ1R antagonists exert inhibitory effects (and agonists stimulatory effects) on pain by stepping down the intracellular signaling cascades involved in transduction of noxious stimuli and plastic changes (i.e., sensitization phenomena) associated with chronic pain states. Areas covered: This review addresses three primary domains. The first focuses on mechanisms underlying the antinociceptive effects of σ1R antagonists. The second addresses evidence gained using pharmacological tools and experimental drugs in the discovery phase and clinical development. Finally, the article outlines the potential benefits of σ1R antagonists, alone or in combination, in the context of available pain therapeutics. Expert opinion: There is a critical need for new analgesics based on new mechanisms of action. Target identification requires convincing evidence relating targets to function. In turn, target validation requires confirmation of therapeutic benefits, ideally in humans. Current preclinical evidence provides strong rationale for σ1R antagonists in pain. The outcome of clinical studies with the most advanced investigational σ1R antagonist, S1RA (E-52862), will be of great interest to ascertain the potential of this new therapeutic approach to pain management. © 2015 Informa UK, Ltd.

Loading ESTEVE collaborators
Loading ESTEVE collaborators