Milpitas, CALIFORNIA, United States
Milpitas, CALIFORNIA, United States

ESS Technology Incorporated is a private manufacturer of computer multimedia products, Audio DAC's and ADCs based in Fremont, California with R&D centers in Kelowna, BC Canada and Beijing, China. It was founded by Fred Chan and Forrest Mozer in 1984. Robert L. Blair is the CEO and President of the company.Historically, ESS Technology was most famous for their line of their Audiodrive chips for audio cards. Now they are known for their line of Sabre DAC and ADC products. Wikipedia.


Time filter

Source Type

A redox flow battery system is provided. The system includes a positive electrode in fluid communication with a positive electrolyte comprising a first metal ion and a negative electrode in fluid communication with a negative electrolyte comprising a second metal ion. An electrically insulating ion conducting surface is provided separating the positive electrode from the negative electrode. Further, the system includes a catalyst surface in fluid communication with the first metal ion, the second metal ion, or a combination thereof, and hydrogen gas, wherein the hydrogen gas and the first metal ion, the second metal ion, or a combination thereof are fluidly contacted at the catalyst surface.


Patent
ESS Technology | Date: 2014-07-01

FIR filters for compensating for fixed pattern jitter, and methods of constructing the same, are disclosed. In one embodiment, a FIR filter filters a signal having a desired frequency component, with the coefficients of the FIR filter selected so that the filter is the equivalent of two combined FIR filters, one having the desired frequency at the filters peak output frequency, and a second in which the signal is delayed by a time equal to half of a period of a different frequency which is desired to be removed from the on signal. In another embodiment, a FIR filter includes a delay line with a total delay longer than the period of the jitter. A signal is passed down the delay line, the number of signal edges that have occurred as the signal passes each delay element in the counted. Drivers corresponding to the delay elements in which a number of signal edges occur at the desired frequency during the period of fixed pattern jitter activate impedance elements attached to those delay elements. A processor configures the activated impedance elements to provide the desired filter response.


Patent
ESS Technology | Date: 2014-03-19

A method and system is disclosed for simultaneously down-converting multiple selected signals, such as RF signals, into adjacent ranges in an intermediate frequency band so that the total resulting bandwidth, and thus the sampling rate required to digitize the signal, is minimized. A first signal is down-converted (304) into a range starting at a lowest selected frequency in the IF band. The next signal is down-converted (304) into a range higher than, but near or adjacent to, the down-converted range of the first signal, and so on. A guard band may be left between the signals if desired. In this way, the selected signals occupy the minimum bandwidth required. When the selection of signals to be down-converted is changed (302), the frequency ranges are dynamically adjusted so that the signals being down-converted always occupy the lowest ranges of the IF band.


A method of rebalancing electrolytes in a redox flow battery system comprises directing hydrogen gas generated on the negative side of the redox flow battery system to a catalyst surface, and fluidly contacting the hydrogen gas with an electrolyte comprising a metal ion at the catalyst surface, wherein the metal ion is chemically reduced by the hydrogen gas at the catalyst surface, and a state of charge of the electrolyte and pH of the electrolyte remain substantially balanced.


A method and system for designing and implementing a finite impulse response (FIR) filter to create a plurality of output signals, each output signal having the same frequency but at a different phase shift from the other output(s), is described. Values are determined for the resistors, or other elements having impedance values, in a FIR filter having a plurality of outputs, such that each output has the same frequency response but a different phase than the other output(s). This is accomplished by the inclusion of a phase factor in the time domain calculation of the resistor values that does not change the response in the frequency domain. The phase shift is constant and independent of the frequency of the output signal.


Patent
ESS Technology | Date: 2016-03-16

An apparatus is disclosed for providing a common mode voltage to the inputs of a first differential amplifier (404, R3, R4) which outputs the difference between two signals. A second differential amplifier (406, R9, R10) receives the output of the first differential amplifier (404, R3, R4), and the output of the second differential amplifier (406, R9, R10) is fed back to the inputs of the first differential amplifier (404, R3, R4) as a common mode voltage. Since both inputs of the first differential amplifier (404, R3, R4) receive the fed back common mode voltage, the first differential amplifier (404, R3, R4) still outputs only the difference in the two signals, but the presence of the common mode voltage allows the first differential amplifier (404, R3, R4) to operate with lower noise if the voltage levels of the inputs to the first differential amplifier (404, R3, R4) vary. The second differential amplifier (406, R9, R10) may be of significantly lower quality and cost than the first differential amplifier (404, R3, R4), without affecting the performance of the first differential amplifier (404, R3, R4).


Patent
ESS Technology | Date: 2015-02-11

Channel select filter circuits are described. One circuit implements a multiplying element and digital-to-analog converter as a differential current mode device. Another circuit implementing a multiplying element and digital-to-analog converter with weighted addition, deferred after multiplication of the digital-to-analog converter and multiplier combination. In one such circuit, substantially equal current source magnitudes are in different columns of the circuit. Another such circuit, with substantially equal current source magnitudes, uses non-radix2. Another such circuit, with substantially equal current source magnitudes, has partial segmentation. Another circuit implements a multiplying element and digital-to-analog converter, with partial segmentation, scrambling bit allocation for elements. One such circuit scrambles bit allocation on equally weighted segments, as described herein. Another circuit implements a multiplying element and digital-to-analog converter with selective enablement of duplicate current source devices. Another circuit implements a multiplying element and digital-to-analog converter with variable effective length of the digital-to-analog converter. In one such circuit one or more current sources of a multiplier element are deselected to remove a noise contribution of the multiplier element, as described herein. A complex filter circuit includes a pair of real finite impulse response filter circuits performing addition and subtraction in current domain, sharing a common resistor network to perform weighted addition. One such circuit further includes a second pair of real finite impulse response filter circuits performing addition and subtraction in current domain, sharing a second common resistor network to perform weighted addition.


Patent
ESS Technology | Date: 2015-12-30

An electrode for use in an all-iron redox flow battery is provided. In one example, the electrode may include a plastic mesh; and a coating on the plastic mesh. The coating may be a hydrophilic coating or a conductive coating and the electrode may have an electrode reaction potential is less than 0.8V. Further, a method of manufacturing a coated plastic mesh electrode for use in an all-iron redox flow battery is provided. In one example method, the steps include fabricating a plastic mesh, treating the plastic mesh by applying a solvent treatment or a plasma treatment or a mechanical abrasion treatment; coating the plastic mesh with a material selected from: carbon inks, metal oxides, and hydrophilic polymers.


Patent
ESS Technology | Date: 2015-07-02

A system and method is disclosed for placing some of the elements of a FIR filter into a high impedance state in certain situations. When it is detected that the signal to an impedance element is the same as the previous value, then the driver of that impedance element is turned off or goes into a high impedance state, so that no current flows through that impedance element, and it no longer contributes to the filter output. Alternatively, if the impedance elements are the same between two adjacent taps of the delay line, the driver of one of those impedance elements may be turned off or go into a high impedance state. The technique may be particularly useful in differential output filters. Turning off a driver effectively removes the attached impedance element from the filter and reduces current flow and power consumption, thus extending battery life in mobile devices.


Patent
ESS Technology | Date: 2015-10-22

An apparatus is disclosed for inputting digital data on the output channel(s) of an audio subsystem in an audio device, without interfering with normal operation of the audio subsystem. The described circuit includes a resistive element in parallel with the expected load device, such as a headphone or speaker. The resistive element receives a modulated digital signal from a data source or a switch, and the instantaneous current through the resistive element due to the modulated digital signal is reflected in a current feedback mechanism of the audio subsystem. Demodulation logic retrieves the digital signal from the current measured by the current feedback mechanism. A capacitor is provided to prevent the current in the resistive element from the digital signal from impacting the average DC current that the feedback mechanism uses to evaluate the load device.

Loading ESS Technology collaborators
Loading ESS Technology collaborators