Time filter

Source Type

Redlands, CA, United States

Esri is an international supplier of Geographic Information System software, web GIS and geodatabase management applications. The company is headquartered in Redlands, California.The company was founded as Environmental Systems Research Institute in 1969 as a land-use consulting firm. Esri products have 40.7% of the global market share. In 2002, Esri had approximately a 30 percent share of the GIS software market worldwide, more than any other vendor.The company has 10 regional offices in the U.S. and a network of 80 international distributors, with about a million users in 200 countries. The firm has 3,000 employees in the U.S., and is still privately held by the founders. In 2006, revenues were about $660 million. In a 2009 Investor's Business Daily article, Esri's annual revenues were indicated to be $1.2 billion, from 300,000 customers .The company hosts an annual International User's Conference, which was first held on the Redlands campus in 1981 with 16 attendees. More recently, the User's Conference has been held in San Diego at the San Diego Convention Center for the past 10 years. An estimated 15,000 users from 131 countries attended in 2012. Wikipedia.

Hafez H.S.,Esri
Physica E: Low-Dimensional Systems and Nanostructures | Year: 2012

Highly active ZnO rod-like nanostructures with pointed-shape ends have been synthesized via a simple hydrothermal method using acetic acid as an organic capping agent. The X-ray diffraction (XRD) pattern of the prepared sample reveals that the ZnO rod-like nanostructures are of pure hexagonal wurtzite structure. Morphology of the nanorods has been investigated by transmission electron microscope (TEM), which showed the formation of pointed nanorods of 30-50 nm in diameter and 400-650 nm in length. Optical properties have been investigated by UV-vis diffuse reflectance and photoluminescence spectroscopy. UV-vis absorption spectrum indicated that the ZnO nanorods have higher visible light harvesting as compared to the other morphologies in the literature. Intense room temperature green-red photoluminescence peaks at 486 nm and 564 nm has been observed for the prepared ZnO. This gives a good evidence of the presence of ionized oxygen vacancies which are favorable for photocatalytic reactions. The BET surface area and the average (BJH) adsorption pore size were 269.86 m 2/g and 2.86 nm, respectively. The photocatalytic activity of the prepared sample was tested on the degradability of an industrial textile dye, Reactive Yellow 15 (Yellow GR), under sunlight irradiation. A 85.7% dye removal was achieved by applications of these rod-like nanostructures as a photocatalyst. The reusability of the synthesized ZnO nanomaterial has been investigated under the same experimental conditions for three time to evaluate the photoactivity of the photocatalyst. © 2012 Elsevier B.V. Source

Esri | Date: 2015-02-18

Embodiments of the invention are directed to a computer-implemented system and method of identifying human settlements in imagery comprising receiving an image, segmenting the image into a plurality of superpixels, analyzing statistical parameters of at least two or more of the plurality of superpixels, where the statistical parameters includes entropy data, and identifying groups of superpixels having at least a predetermined cluster density and a predetermined entropy. Some embodiments further include clipping the image to only include the identified groups of superpixels having the predetermined cluster density and entropy, analyzing statistical parameters of the clipped image, analyzing geometric factors of the clipped image, determining one or more settlements based on the statistical parameters and geometric factors of the superpixels, and identifying a shape and area of the one or more settlements based on the statistical parameters and geometric factors of the clipped image.

Esri | Date: 2015-03-02

Embodiments of the invention relate to an image or raster compression method that includes receiving pixel data for a raster comprising a two dimensional (2D) array of pixels where each pixel is associated with a data value. The method further includes receiving a user defined parameter defining a maximum error allowable per pixel for a compression algorithm. The raster can be divided into a number of pixel blocks where each pixel can be quantized and bit stuffed based on a number of block statistics including the maximum error allowable. The method further includes executing the compression algorithm wherein for each pixel, where an error caused by the compression algorithm is equal to or less than the maximum error allowable, and encoding the pixel data based on the compression algorithm. In certain embodiments, the compression algorithm is a non-transform compression algorithm.

Agency: Cordis | Branch: H2020 | Program: RIA | Phase: ICT-39-2015 | Award Amount: 3.93M | Year: 2016

its4land delivers an innovative suite of land tenure recording tools that responds to sub Saharan Africas immense challenge to rapidly and cheaply map millions of unrecognized land rights in the region. ICT innovation will play a key role. Existing approaches have failed: disputes abound, investment is impeded, and the communitys poorest lose out. its4land reinforces strategic collaboration between the EU and East Africa via a scalable and transferrable ICT solution. Established local, national, and international partnerships drive the project results beyond R&D into the commercial realm. its4land combines an innovation process with emerging geospatial technologies, including smart sketchmaps, UAVs, automated feature extraction, and geocloud services, to deliver land recording services that are end-user responsive, market driven, and fit-for-purpose. The transdisciplinary work also develops supportive models for governance, capacity development, and business capitalization. Gender sensitive analysis and design is also incorporated. Set in the East African development hotbeds of Rwanda, Kenya, and Ethiopia, its4land falls within TRL 5-7: 3 major phases host 8 work packages that enable contextualization, design, and eventual land sector transformation. In line with Living Labs thinking, localized pilots and demonstrations are embedded in the design process. The experienced consortium is multi-sectorial, multi-national, and multidisciplinary. It includes SMEs and researchers from 3 EU countries and 3 East African countries: the necessary complementary skills and expertise is delivered. Responses to the range of barriers are prepared: strong networks across East Africa are key in mitigation. The tailored project management plan ensures clear milestones and deliverables, and supports result dissemination and exploitation: specific work packages and roles focus on the latter.

Agency: Cordis | Branch: H2020 | Program: IA | Phase: WATER-1a-2014 | Award Amount: 4.28M | Year: 2015

The main objective of MOSES is to put in place and demonstrate at the real scale of application an information platform devoted to water procurement and management agencies (e.g. reclamation consortia, irrigation districts, etc.) to facilitate planning of irrigation water resources, with the aim of: saving water; improving services to farmers; reducing monetary and energy costs. To achieve these goals, the MOSES project combines in an innovative and integrated platform a wide range of data and technological resources: EO data, probabilistic seasonal forecasting and numerical weather prediction, crop water requirement and irrigation modelling and online GIS Decision Support System. Spatial scales of services range from river basin to sub-district; users access the system depending on their expertise and needs. Main system components are: 1. early-season irrigated crop mapping 2. seasonal weather forecasting and downscaling 3. in-season monitoring of evapotranspiration and water availability 4. seasonal and medium/short term irrigation forecasting Four Demonstration Areas will be set up in Italy, Spain, Romania and Morocco, plus an Indian organization acting as observer. Different water procurement and distribution scenarios will be considered, collecting data and user needs, interfacing with existing local services and contributing to service definition. Demonstrative and training sessions are foreseen for service exploitation in the Demonstration Areas. The proposed system is targeting EIP on Water thematic priorities related to increasing agriculture water use efficiency, water resource monitoring and flood and drought risk management; it will be compliant to INSPIRE. This SME-led project address to the irrigated agriculture users an integrated and innovative water management solution.

Discover hidden collaborations