Guayaquil, Ecuador

ESPOL Polytechnic University
Guayaquil, Ecuador
Time filter
Source Type

Agency: European Commission | Branch: FP7 | Program: CPCSA | Phase: INFRA-2011-1.2.2. | Award Amount: 4.48M | Year: 2011

agINFRA is an Integrated Infrastructure Initiative (I3) project that will try to introduce the agricultural scientific communities into the vision of open and participatory data-intensive science. In particular, agINFRA aims to design and develop a scientific data infrastructure for agricultural sciences that will facilitate the development of policies and the deployment of services that will promote sharing of data among agricultural scientists and develop trust within and among their communities. agINFRA will try to remove existing obstacles concerning the open access to scientific information and data in agriculture, as well as improve the preparedness of agricultural scientific communities to face, manage and exploit the abundance of relevant data that is (or will be) available and can support agricultural research.\n\nUltimately, agINFRA will demonstrate how a data infrastructure for agricultural scientific communities can be set up to facilitate data generation, provenance, quality assessment, certification, curation, annotation, navigation and management.

Vargas G.R.,ESPOL Polytechnic University
Conference Proceedings - IEEE SOUTHEASTCON | Year: 2017

Environmental measurements are nowadays gaining momentum due to availability of open software/hardware solutions, which made them affordable to industry, academia, and technology enthusiasts. Air and water quality conditions are some environment related measurements that have several applications in ecology, industry and aquaculture. Here, an optical fiber probe or 'optode' for oxygen concentration measurement is presented. Due to its low cost and availability; plastic optical fibers with commercial Ru(II) oxygen patch were chosen to build a probe. Also, to extract information from the sensor a fluorescence intensity measurement system was employed due to its simplicity in implementation. To test this development, an experiment was made where 10 gaseous oxygen concentration levels were applied to obtain a calibration relation for the optode. It was demonstrated, due to the non-linearity of the sensor patch that a solubility model has good correlation to data instead of the usual linear relationship between intensity and oxygen concentration. © 2017 IEEE.

Bonilla R.I.,ESPOL Polytechnic University
IEEE Global Engineering Education Conference, EDUCON | Year: 2017

In this position paper we present the novel idea of using an open-source, community-based approach for creating survey instruments. We frame the survey-writing problem in the context of designing survey instruments to assess university students about their attitudes, literacy, readiness, etc., on Information Assurance and Security, but the idea is applicable to any type of collaborative survey writing. The main contributions of this work are: (1) the novel idea of open-source surveys, (2) an analysis of the benefits and requirements of this idea, and (3) the proposal of a process to use current open-source tools to create and maintain a base of questions and surveys. © 2017 IEEE.

Anastacio J.A.R.,ESPOL Polytechnic University
International Journal of Energy Economics and Policy | Year: 2017

The goal of this paper is validity the environmental Kuznets curve hypothesis for North America countries (Canada, United States and Mexico) over the annual period 1980-2008. Pedroni cointegration tests are applied for testing long-run relationship between the variables. Using the panel fully modified ordinary least squares (OLSs) and the panel dynamic OLSs determinate the elasticities of the long-run relationships. The results show that there is an inverted U-shape relationship. Finally, in the long-run, the results of the causality test show that there is a unidirectional causal flow from energy consumption, electricity consumption and economic growth to CO2 emissions in North America. © 2017, Econjournals. All rights reserved.

Torres J.,ESPOL Polytechnic University
2017 4th International Conference on eDemocracy and eGovernment, ICEDEG 2017 | Year: 2017

Each year, natural disasters cause severe damage to infrastructure and lead to significant losses of human lives. Non-governmental organizations (NGOs) and activists use social media networks to disseminate and organize relief efforts, but are often unable to efficiently gather volunteers and resources. Harnessing the power of crowdsourced social media services (e.g. Twitter, Facebook, Google+), we can provide trustworthy channels that can contribute in the relief efforts lead by NGOs and activists. This research project seeks to determine the best approach to build a social recommender model based on the dynamics of human behavior exhibited by fine-grained geospatial footprints of citizens on social networks. Thus, the aim is to provide location-aware recommendations of trustworthy activists, enabling citizens to contribute more efficiently during events, such as, natural disasters. © 2017 IEEE.

Agency: European Commission | Branch: FP7 | Program: CP-SICA | Phase: ENV.2007. | Award Amount: 2.92M | Year: 2008

The overall objective of the WETwin project is to enhance the role of wetlands in basin-scale integrated water resources management, with the aim of improving the community service functions while conserving good ecological status. Strategies will be worked out for: utilizing the drinking water supply and sanitation potentials of wetlands for the benefit of people living in the basin, while maintaining (and improving as much as possible) the ecosystem functions adapting wetland management to changing environmental conditions integrating wetlands into river basin management improving stakeholder participation and capacity building with the aim of supporting sustainable wetland management. The project will work on twinned case study wetlands from Africa, South America and Europe. Management solutions will be worked out for these wetlands with the aim of supporting the achievement of the above objectives. Involvement of local stakeholders into the planning process will play a crucial role. Knowledge and experiences gained from these case studies will be summarized in general guidelines in order to support achieving project objectives on global scale. The project also aims at supporting the global exchange of expertise on wetland management. Stakeholder participation, capacity building and expertise exchange will be supported by a series of stakeholder and twinning workshops.

Chica E.J.,ESPOL Polytechnic University | Gene Albrigo L.,University of Florida
Journal of the American Society for Horticultural Science | Year: 2013

Cool ambient temperatures (5 to 20 8C) and water deficit are the only factors known to induce flowering in sweet orange (Citrus sinensis). Whereas the effects of cool ambient temperatures on flowering have been described extensively, reports on the mechanisms underlying floral induction bywater deficit in sweet orange (and other tropical and subtropical species) are scarce. We report changes in the accumulation of transcripts of four flower-promoting genes, CsFT, CsSL1, CsAP1, and CsLFY, in sweet orange trees in response to water deficit or a combination of water deficit and cool temperatures under controlled conditions. Exposure to water deficit increased the accumulation of CsFT transcripts, whereas transcripts of CsSL1, CsAP1, and CsLFY were reduced. However, when water deficit was interrupted by irrigation, accumulation of CsFT transcripts returned rapidly to pre-treatment levels and accumulation of CsSL1, CsAP1, and CsLFY increased. The accumulation of CsFT transcripts in trees during the combined water deficit and cool temperatures treatment was higher than in trees exposed to either factor separately, and accumulation of CsAP1 and CsLFY transcripts after the combined treatment was also higher. These results suggest that water deficit induces flowering through the upregulation of CsFT and that CsFT is the leaf integrator of flower-inducing signals generated by the exposure to water deficit and cool temperatures in sweet orange.

Kryachko E.S.,NASU Bogolyubov Institute for Theoretical Physics | Ludena E.V.,Venezuelan Institute for Scientific Research | Ludena E.V.,ESPOL Polytechnic University
Physics Reports | Year: 2014

Guided by the above motto (quotation), we review a broad range of issues lying at the foundations of Density Functional Theory, DFT, a theory which is currently omnipresent in our everyday computational study of atoms and molecules, solids and nano-materials, and which lies at the heart of modern many-body computational technologies. The key goal is to demonstrate that there are definitely the ways to improve DFT. We start by considering DFT in the larger context provided by reduced density matrix theory (RDMT) and natural orbital functional theory (NOFT), and examine the implications that N-representability conditions on the second-order reduced density matrix (2-RDM) have not only on RDMT and NOFT but, also, by extension, on the functionals of DFT. This examination is timely in view of the fact that necessary and sufficient N-representability conditions on the 2-RDM have recently been attained.In the second place, we review some problems appearing in the original formulation of the first Hohenberg-Kohn theorem which is still a subject of some controversy. In this vein we recall Lieb's comment on this proof and the extension to this proof given by Pino etal. (2009), and in this context examine the conditions that must be met in order that the one-to-one correspondence between ground-state densities and external potentials remains valid for finite subspaces (namely, the subspaces where all Kohn-Sham solutions are obtained in practical applications).We also consider the issue of whether the Kohn-Sham equations can be derived from basic principles or whether they are postulated. We examine this problem in relation to ab initio DFT. The possibility of postulating arbitrary Kohn-Sham-type equations, where the effective potential is by definition some arbitrary mixture of local and non-local terms, is discussed.We also deal with the issue of whether there exists a universal functional, or whether one should advocate instead the construction of problem-geared functionals. These problems are discussed by making reference to ab initio DFT as well as to the local-scaling-transformation version of DFT, LS-DFT.In addition, we examine the question of the accuracy of approximate exchange-correlation functionals in the light of their non-observance of the variational principle. Why do approximate functionals yield reasonable (and accurate) descriptions of many molecular and condensed matter properties? Are the conditions imposed on exchange and correlation functionals sufficiently adequate to produce accurate semi-empirical functionals? In this respect, we consider the question of whether the results reflect a true approach to chemical accuracy or are just the outcome of a virtuoso-like performance which cannot be systematically improved. We discuss the issue of the accuracy of the contemporary DFT results by contrasting them to those obtained by the alternative RDMT and NOFT.We discuss the possibility of improving DFT functionals by applying in a systematic way the N-representability conditions on the 2-RDM. In this respect, we emphasize the possibility of constructing 2-matrices in the context of the local scaling transformation version of DFT to which the N-representability condition of RDM theory may be applied.We end up our revision of HKS-DFT by considering some of the problems related to spin symmetry and discuss some current issues dealing with a proper treatment of open-shell systems. We are particularly concerned, as in the rest of this paper, mostly with foundational issues arising in the construction of functionals.We dedicate the whole Section 4 to the local-scaling transformation version of density functional theory, LS-DFT. The reason is that in this theory some of the fundamental problems that appear in HKS-DFT, have been solved. For example, in LS-DFT the functionals are, in principle, designed to fulfill v- and N-representability conditions from the outset. This is possible because LS-DFT is based on density transformation (local-scaling of coordinates proceeds through density transformation) and so, because these functionals are constructed from prototype N-particle wavefunctions, the ensuing density functionals already have built-in N-representability conditions. This theory is presented in great detail with the purpose of illustrating an alternative way to HKS-DFT which could be used to improve the construction of HKS-DFT functionals. Let us clearly indicate, however, that although appealing from a theoretical point of view, the actual application of LS-DFT to large systems has not taken place mostly because of technical difficulties. Thus, our aim in introducing this theory is to foster a better understanding of its foundations with the hope that it may promote a cross-hybridization with the already existing approaches. Also, to complete our previous discussion on symmetry, in particular, spin-symmetry, we discuss this issue from the perspective of LS-DFT.Finally, in Section 6, we discuss dispersion molecular forces emphasizing their relevance to DFT approaches. © 2014 Elsevier B.V.

Chavez J.P.,ESPOL Polytechnic University
International Journal of Bifurcation and Chaos | Year: 2010

We consider parameter-dependent, continuous-time dynamical systems under discretizations. It is shown that fold-Hopf singularities are O(h p)-shifted and turned into fold-NeimarkSacker points by one-step methods of order p. Then we analyze the effect of discretizations methods on the local bifurcation diagram near BogdanovTakens and fold-Hopf singularities. In particular, we prove that the discretized codimension one curves intersect at the singularities in a generic manner. The results are illustrated by a numerical example. © 2010 World Scientific Publishing Company.

Cardenas W.B.,ESPOL Polytechnic University
Viruses | Year: 2010

The members of the filoviruses are recognized as some of the most lethal viruses affecting human and non-human primates. The only two genera of the Filoviridae family, Marburg virus (MARV) and Ebola virus (EBOV), comprise the main etiologic agents of severe hemorrhagic fever outbreaks in central Africa, with case fatality rates ranging from 25 to 90%. Fatal outcomes have been associated with a late and dysregulated immune response to infection, very likely due to the virus targeting key host immune cells, such as macrophages and dendritic cells (DCs) that are necessary to mediate effective innate and adaptive immune responses. Despite major progress in the development of vaccine candidates for filovirus infections, a licensed vaccine or therapy for human use is still not available. During the last ten years, important progress has been made in understanding the molecular mechanisms of filovirus pathogenesis. Several lines of evidence implicate the impairment of the host interferon (IFN) antiviral innate immune response by MARV or EBOV as an important determinant of virulence. In vitro and in vivo experimental infections with recombinant Zaire Ebola virus (ZEBOV), the best characterized filovirus, demonstrated that the viral protein VP35 plays a key role in inhibiting the production of IFN-α/β. Further, the action of VP35 is synergized by the inhibition of cellular responses to IFN-α/β by the minor matrix viral protein VP24. The dual action of these viral proteins may contribute to an efficient initial virus replication and dissemination in the host. Noticeably, the analogous function of these viral proteins in MARV has not been reported. Because the IFN response is a major component of the innate immune response to virus infection, this chapter reviews recent findings on the molecular mechanisms of IFN-mediated antiviral evasion by filovirus infection. © 2010 by the authors.

Loading ESPOL Polytechnic University collaborators
Loading ESPOL Polytechnic University collaborators