Entity

Time filter

Source Type


Oostenveld R.,Radboud University Nijmegen | Fries P.,Radboud University Nijmegen | Fries P.,Ernst Strungmann Institute (ESI) for Neuroscience | Maris E.,Radboud University Nijmegen | Schoffelen J.-M.,Radboud University Nijmegen
Computational Intelligence and Neuroscience | Year: 2011

This paper describes FieldTrip, an open source software package that we developed for the analysis of MEG, EEG, and other electrophysiological data. The software is implemented as a MATLAB toolbox and includes a complete set of consistent and user-friendly high-level functions that allow experimental neuroscientists to analyze experimental data. It includes algorithms for simple and advanced analysis, such as time-frequency analysis using multitapers, source reconstruction using dipoles, distributed sources and beamformers, connectivity analysis, and nonparametric statistical permutation tests at the channel and source level. The implementation as toolbox allows the user to perform elaborate and structured analyses of large data sets using the MATLAB command line and batch scripting. Furthermore, users and developers can easily extend the functionality and implement new algorithms. The modular design facilitates the reuse in other software packages. Copyright © 2011 Robert Oostenveld, et al. Source


Uhlhaas P.J.,Max Planck Institute for Brain Research | Singer W.,Max Planck Institute for Brain Research | Singer W.,Goethe University Frankfurt | Singer W.,Ernst Strungmann Institute (ESI) for Neuroscience
Schizophrenia Bulletin | Year: 2011

Recent data from developmental cognitive neuroscience highlight the profound changes in the organization and function of cortical networks during the transition from adolescence to adulthood. While previous studies have focused on the development of gray and white matter, recent evidence suggests that brain maturation during adolescence extends to fundamental changes in the properties of cortical circuits that in turn promote the precise temporal coding of neural activity. In the current article, we will highlight modifications in the amplitude and synchrony of neural oscillations during adolescence that may be crucial for the emergence of cognitive deficits and psychotic symptoms in schizophrenia. Specifically, we will suggest that schizophrenia is associated with impaired parameters of synchronous oscillations that undergo changes during late brain maturation, suggesting an important role of adolescent brain development for the understanding, treatment, and prevention of the disorder. © The Author 2009. Source


Schmid M.C.,Ernst Strungmann Institute (ESI) for Neuroscience | Maier A.,Vanderbilt University
Progress in Neurobiology | Year: 2015

Even during moments when we fail to be fully aware of our environment, our brains never go silent. Instead, it appears that the brain can also operate in an alternate, unconscious mode. Delineating unconscious from conscious neural processes is a promising first step toward investigating how awareness emerges from brain activity. Here we focus on recent insights into the neuronal processes that contribute to visual function in the absence of a conscious visual percept. Drawing on insights from findings on the phenomenon of blindsight that results from injury to primary visual cortex and the results of experimentally induced perceptual suppression, we describe what kind of visual information the visual system analyzes unconsciously and we discuss the neuronal routing and responses that accompany this process. We conclude that unconscious processing of certain visual stimulus attributes, such as the presence of visual motion or the emotional expression of a face can occur in a geniculo-cortical circuit that runs independent from and in parallel to the predominant route through primary visual cortex. We speculate that in contrast, bidirectional neuronal interactions between cortex and the thalamic pulvinar nucleus that support large-scale neuronal integration and visual awareness are impeded during blindsight and perceptual suppression. © 2015 Elsevier Ltd. Source


Uhlhaas P.J.,University of Glasgow | Singer W.,Max Planck Institute for Brain Research | Singer W.,Ernst Strungmann Institute (ESI) for Neuroscience | Singer W.,Goethe University Frankfurt
Biological Psychiatry | Year: 2015

A considerable body of work over the last 10 years combining noninvasive electrophysiology (electroencephalography/magnetoencephalography) in patient populations with preclinical research has contributed to the conceptualization of schizophrenia as a disorder associated with aberrant neural dynamics and disturbances in excitation/inhibition balance. This complements previous research that has largely focused on the identification of abnormalities in circumscribed brain regions and on disturbances of dopaminergic mechanisms as a cause of positive symptoms and executive deficits. In the current review, we provide an update on studies focusing on aberrant neural dynamics. First, we discuss the role of rhythmic activity in neural dynamics and in the coordination of distributed neuronal activity into organized neural states. This is followed by an overview on the current evidence for impaired neural oscillations and synchrony in schizophrenia and associated abnormalities in gamma-aminobutyric acidergic and glutamatergic neurotransmission. Finally, we discuss the distinction between fundamental symptoms, which are reflected in cognitive deficits, and psychotic, accessory symptoms, the latter likely constituting a compensatory response for aberrant neuronal dynamics. © 2015 Society of Biological Psychiatry. Source


Ayaz A.,University College London | Ayaz A.,University of Zurich | Saleem A.B.,University College London | Scholvinck M.L.,University College London | And 2 more authors.
Current Biology | Year: 2013

Growing evidence indicates that responses in sensory cortex are modulated by factors beyond direct sensory stimulation [1-8]. In primary visual cortex (V1), for instance, responses increase with locomotion [9, 10]. Here we show that this increase is accompanied by a profound change in spatial integration. We recorded from V1 neurons in head-fixed mice placed on a spherical treadmill. We characterized spatial integration and found that the responses of most neurons were suppressed by large stimuli. As in primates [11, 12], this surround suppression increased with stimulus contrast. These effects were captured by a divisive normalization model [13, 14], where the numerator originates from a central region driving the neuron and the denominator originates from a larger suppressive field. We then studied the effects of locomotion and found that it markedly reduced surround suppression, allowing V1 neurons to integrate over larger regions of visual space. Locomotion had two main effects: it increased spontaneous activity, and it weakened the suppressive signals mediating normalization, relative to the driving signals. We conclude that a fundamental aspect of visual processing, spatial integration, is controlled by an apparently unrelated factor, locomotion. This control might operate through the mechanisms that are in place to deliver surround suppression. © 2013 Elsevier Ltd. Source

Discover hidden collaborations