United States
United States

Time filter

Source Type

Perry J.R.B.,University of Exeter | Perry J.R.B.,University of Oxford | Perry J.R.B.,King's College London | Corre T.,University of Lausanne | And 83 more authors.
Human Molecular Genetics | Year: 2013

Early menopause (EM) affects up to 10% of the female population, reducing reproductive lifespan considerably. Currently, it constitutes the leading cause of infertility in the western world, affecting mainly those women who postpone their first pregnancy beyond the age of 30 years. The genetic aetiology of EM is largely unknown in the majority of cases. We have undertaken a meta-analysis of genome-wide association studies (GWASs) in 3493 EM cases and 13 598 controls from 10 independent studies. No novel genetic variants were discovered, but the 17 variants previously associated with normal age at natural menopause as a quantitative trait (QT) were also associated with EM and primary ovarian insufficiency (POI). Thus, EM has a genetic aetiology which overlaps variation in normal age at menopause and is at least partly explained by the additive effects of the same polygenic variants. The combined effect of the common variants captured by the single nucleotide polymorphism arrays was estimated to account for ~30% of the variance in EM. The association between the combined 17 variants and the risk of EM was greater than the best validated non-genetic risk factor, smoking. © The Author 2013. Published by Oxford University Press.

Elks C.E.,Addenbrookes Hospital | Perry J.R.B.,University of Exeter | Sulem P.,DeCODE Genetics Inc. | Chasman D.I.,Brigham and Women's Hospital | And 215 more authors.
Nature Genetics | Year: 2010

To identify loci for age at menarche, we performed a meta-analysis of 32 genome-wide association studies in 87,802 women of European descent, with replication in up to 14,731 women. In addition to the known loci at LIN28B (P = 5.4 × 10 -60) and 9q31.2 (P = 2.2 × 10 -33), we identified 30 new menarche loci (all P < 5 × 10 -8) and found suggestive evidence for a further 10 loci (P < 1.9 × 10 -6). The new loci included four previously associated with body mass index (in or near FTO, SEC16B, TRA2B and TMEM18), three in or near other genes implicated in energy homeostasis (BSX, CRTC1 and MCHR2) and three in or near genes implicated in hormonal regulation (INHBA, PCSK2 and RXRG). Ingenuity and gene-set enrichment pathway analyses identified coenzyme A and fatty acid biosynthesis as biological processes related to menarche timing. © 2010 Nature America, Inc. All rights reserved.

Chami N.,University of Montréal | Chami N.,Montreal Heart Institute | Chen M.-H.,U.S. National Institutes of Health | Slater A.J.,Glaxosmithkline | And 148 more authors.
American Journal of Human Genetics | Year: 2016

Red blood cell (RBC) traits are important heritable clinical biomarkers and modifiers of disease severity. To identify coding genetic variants associated with these traits, we conducted meta-analyses of seven RBC phenotypes in 130,273 multi-ethnic individuals from studies genotyped on an exome array. After conditional analyses and replication in 27,480 independent individuals, we identified 16 new RBC variants. We found low-frequency missense variants in MAP1A (rs55707100, minor allele frequency [MAF] = 3.3%, p = 2 × 10−10 for hemoglobin [HGB]) and HNF4A (rs1800961, MAF = 2.4%, p < 3 × 10−8 for hematocrit [HCT] and HGB). In African Americans, we identified a nonsense variant in CD36 associated with higher RBC distribution width (rs3211938, MAF = 8.7%, p = 7 × 10−11) and showed that it is associated with lower CD36 expression and strong allelic imbalance in ex vivo differentiated human erythroblasts. We also identified a rare missense variant in ALAS2 (rs201062903, MAF = 0.2%) associated with lower mean corpuscular volume and mean corpuscular hemoglobin (p < 8 × 10−9). Mendelian mutations in ALAS2 are a cause of sideroblastic anemia and erythropoietic protoporphyria. Gene-based testing highlighted three rare missense variants in PKLR, a gene mutated in Mendelian non-spherocytic hemolytic anemia, associated with HGB and HCT (SKAT p < 8 × 10−7). These rare, low-frequency, and common RBC variants showed pleiotropy, being also associated with platelet, white blood cell, and lipid traits. Our association results and functional annotation suggest the involvement of new genes in human erythropoiesis. We also confirm that rare and low-frequency variants play a role in the architecture of complex human traits, although their phenotypic effect is generally smaller than originally anticipated. © 2016 American Society of Human Genetics

Dubois L.,Uppsala University Hospital | Stridsberg M.,Uppsala University Hospital | Kharaziha P.,Karolinska Institutet | Chioureas D.,Karolinska Institutet | And 3 more authors.
Prostate | Year: 2015

BACKGROUND. Prostasomes are nanosized extracellular vesicles exocytosed by prostate epithelial cells. They have been assigned many roles propitious to sperm in favor of fertilization. Prostatic cancer cells can also produce and secrete extracellular vesicles. METHODS. We assessed using ELISA, the surface expression of chromogranin proproteins on prostasomes and malignant extracellular vesicles of four different prostate cancer cell-lines, two hormone sensitive and two hormone refractory. We used a panel of chromogranin A and chromogranin B antibodies against peptides in-between hypothetical cleavage sites along the proproteins. RESULTS. A diverging pattern of chromogranin peptides was apparent when comparing prostasomes and malignant extracellular vesicles indicating a phenotypical change. We also compared western blot patterns (prostasomes and malignant extracellular vesicles) for selected antibodies that displayed high absorbances in the ELISA. Western blot analyses revealed various cleavage patterns of those proproteins that were analyzed in prostasomes and extracellular vesicles. CONCLUSION. Chromogranins are constituents of not only prostasomes but also of malignant prostate cell-derived extracellular vesicles with different amino acid sequences exposed at the membrane surface giving rise to a mosaic pattern. These findings may be of relevance for designing new assays for detection or even possible treatment of prostate cancers. © 2015 Wiley Periodicals, Inc.

Heijnen B.F.J.,Maastricht University | Pelkmans L.P.J.,Maastricht University | Danser A.H.J.,Erasmus | Garrelds I.M.,Erasmus | And 4 more authors.
JRAAS - Journal of the Renin-Angiotensin-Aldosterone System | Year: 2014

This study investigated renin-angiotensin system (RAS)-induced cardiac remodeling and its reversibility in the presence and absence of high blood pressure (BP) in Cyp1a1-Ren2 transgenic inducible hypertensive rats (IHR). In IHR (pro)renin levels and BP can be dose-dependently titrated by oral administration of indole-3-carbinol (I3C). Young (four-weeks old) and adult (30-weeks old) IHR were fed I3C for four weeks (leading to systolic BP >200 mmHg). RAS-stimulation was stopped and animals were followed-up for a consecutive period. Cardiac function and geometry was determined echocardiographically and the hearts were excised for molecular and immunohistochemical analyses. Echocardiographic studies revealed that four weeks of RAS-stimulation incited a cardiac remodeling process characterized by increased left ventricular (LV) wall thickness, decreased LV volumes, and shortening of the left ventricle. Hypertrophic genes were highly upregulated, whereas in substantial activation a fibrotic response was absent. Four weeks after withdrawal of I3C, (pro)renin levels were normalized in all IHR. While in adult IHR BP returned to normal, hypertension was sustained in young IHR. Despite the latter, myocardial hypertrophy was fully regressed in both young and adult IHR. We conclude that (pro)renin-induced severe hypertension in IHR causes an age-independent fully reversible myocardial concentric hypertrophic remodeling, despite a continued elevated BP in young IHR. © The Author(s) 2014.

Loading Erasmus collaborators
Loading Erasmus collaborators