Barcelona, Spain
Barcelona, Spain

Time filter

Source Type

Grant
Agency: European Commission | Branch: FP7 | Program: BSG-SME | Phase: SME-2013-1 | Award Amount: 1.35M | Year: 2013

Therapeutic antibodies have transformed cancer therapy during the last decade, due to their high selectivity of targeting cancer cells in comparison to standard small molecule chemotherapy. Most recently, the coupling of cellular toxins to therapeutic antibodies has demonstrated an even greater efficacy in the therapy of cancer and the first, highly potent antibody drug conjugate (ADC), Adcetris, was FDA approved in August 2011. All ADCs currently in clinical development are generated by chemical conjugation of small molecule toxins to antibodies. This is an inefficient process, as site and ratio of toxin coupling cannot be controlled. In addition, the chemical conjugation involves chemical modification of potentially functional parts of the antibody. This can have negative effects on stability, specificity, CMC properties and the overall structure of the antibody. All this renders ADC manufacturing highly challenging, complicates regulatory procedures, and adds to development time and costs. The SME consortium has complementary proprietary technologies and proposes to leverage this complementary expertise and know-how for defining novel processes of enzymatically conjugating small molecule toxins to antibodies that allow full control about toxin coupling site and ratio. Due to the high selectivity of enzymatic conjugation and physiologic conjugation conditions, it is expected that more homogeneous ADCs are generated with better CMC properties, higher potency, and at lower cost-of-goods in manufacturing. The consortium members believe that this represents a disruptive technology that will be highly competitive to traditional chemical conjugation, currently dominated by U.S.-based ADC technology companies Seattle Genetics and Immunogen. In addition to novel composition-of-matter IP, important novel know-how for ADC development will be created. Most importantly, better quality and potency of these next-generation ADCs will eventually benefit cancer patients.


Grant
Agency: European Commission | Branch: FP7 | Program: CP-TP | Phase: KBBE.2012.3.3-03 | Award Amount: 7.11M | Year: 2012

The European Life science and chemical industries increasingly depend on effi-cient, sustainable, and cost-effective bioprocessing platforms to remain competi-tive. A critical assessment of current bottlenecks during (bio) manufacturing clearly indicates that the recovery and purification of biologicals in large scale in responsible for many inefficiencies. INTENSO proposes an evaluation of the current situation of the downstream processing scenario with the aim of identifying inefficiencies and concomitantly introduce a debottlenecking overarching strategy. The later will be build up on the basis of a multidisciplinary approach, which considers opportunities to im-prove the process technology and underlying chemistry / biology and materials science at the same time. INTENSO will work alongside 4 technological axes, targeting promising and up-coming technologies and tailoring such technologies to the manufacturing of various classes of (bio) products. Intensification of individual unit operations and global process integration, as well as, dovetailing with fermentation / cell cultivation will be employed to the mentioned end. INTENSO will target new classes of (bio) products like Monoclonal Antibodies (Mabs), pDNA (e.g. for genetic vaccination), Virus Like Particles (VLP) or nano-plexes. All the mentioned new products are part of most industrial R&D pipelines and offer an excellent opportunity to introduce innovative bioprocessing. The results of the project are expected to contribute to the understanding of current industrial downstream processing practice, to the definition and alleviation of current inefficiencies, to the development and / or implementation of novel technologies, and to more efficient / sustainable and cost effective (bio) manufacturing. Various technologies will be studied utilizing a nano-to-process strategy so as to introduce integration / intensification during bioprocessing.


Schmidt S.R.,ERA Biotech
Molecular Biotechnology | Year: 2013

Protein bodies are natural structures containing protein aggregates that exist in many organisms ranging from bacteria to mammals and plants. In bacteria they are often a phenomenon associated to over-expression of heterologous proteins. In mammals the so called Russell bodies indicate an accumulation of mutated immune globulins. In plants the protein bodies play a major role as protein storage organelle in seeds. Besides these natural cases, protein bodies can also be artificially induced primarily using self-assembling peptides. Frequently plant derived proteins such as prolamins or their derivatives are used. In some cases the help of an endoplasmatic retention signal is needed to create artificial protein bodies. The biotechnological application of protein bodies offers novel solutions such as the simplification of downstream processing in protein manufacture, the utilisation as particle for immunisation as vaccines or as carrier free self immobilised enzyme particle for many industrial catalytic processes. © 2012 Springer Science+Business Media, LLC.


Patent
ERA Biotech | Date: 2015-05-26

A fusion protein that is expressed in a recombinant protein body-like assembly (RPBLA) in host eukaryotic cells and organisms is disclosed. More particularly, a biologically active polypeptide fused to a protein sequence that mediates the induction of RPBLA formation is expressed and accumulated in host cells after transformation with an appropriate vector. The eukaryotic host cell does not produce protein bodies in the absence of the fusion protein. Methods for preparing and using the RPBLAs and the fusion protein are also disclosed, as are nucleic acid molecules that encode the fusion proteins.


Patent
ERA Biotech | Date: 2012-09-28

The present invention relates generally to robust split inteins. The split inteins described herein are active over a large temperature range, including temperatures as low as 0 C., over a wide pH range, and in the presence of chaotropic salts. The split inteins also show high tolerance to sequence variability in fused heterologous polypeptides and therefore are useful in protein purification and engineering techniques.


Patent
ERA Biotech | Date: 2013-03-15

The present invention provides a pipette tip member with improved seal.


Patent
ERA Biotech | Date: 2013-03-15

The present invention provides sample tube assemblies with improved seal.


Patent
ERA Biotech | Date: 2011-08-03

A fusion protein that is expressed in a recombinant protein body-like assembly (RPBLA) in host eukaryotic cells and organisms is disclosed. More particularly, a biologically active polypeptide fused to a protein sequence that mediates the induction of RPBLA formation is expressed and accumulated in host cells after transformation with an appropriate vector. The eukaryotic host cell does not produce protein bodies in the absence of the fusion protein. Methods for preparing and using the RPBLAs and the fusion protein are also disclosed, as are nucleic acid molecules that encode the fusion proteins.


Patent
ERA Biotech | Date: 2012-02-15

Polypeptide sequences for inducing recombinant protein bodies are described. The sequences comprise a polyproline II (PPII) structure between two cysteine residues on either end and an ER signal sequence Recombinant protein bodies are useful for protein production because they allow for simple and efficient purification of high quantities of recombinant protein. In addition, other methods of using recombinant protein bodies, for example, in vaccination, are also described.


Patent
ERA Biotech | Date: 2011-06-22

A fusion protein that is expressed in a recombinant protein body-like assembly (RPBLA) in host eukaryotic cells and organisms is disclosed. More particularly, a biologically active polypeptide fused to a protein sequence that mediates the induction of RPBLA formation is expressed and accumulated in host cells after transformation with an appropriate vector. The eukaryotic host cell does not produce protein bodies in the absence of the fusion protein. Methods for preparing and using the RPBLAs and the fusion protein are also disclosed, as are nucleic acid molecules that encode the fusion proteins.

Loading ERA Biotech collaborators
Loading ERA Biotech collaborators