Equipe labellisee Ligue Nationale Contre le Cancer

Sainte-Foy-lès-Lyon, France

Equipe labellisee Ligue Nationale Contre le Cancer

Sainte-Foy-lès-Lyon, France
Time filter
Source Type

Chanut P.,CNRS Institute of Pharmacology and Structural Biology | Chanut P.,Equipe Labellisee Ligue Nationale Contre le Cancer | Britton S.,CNRS Institute of Pharmacology and Structural Biology | Britton S.,Equipe Labellisee Ligue Nationale Contre le Cancer | And 6 more authors.
Nature Communications | Year: 2016

Repair of single-ended DNA double-strand breaks (seDSBs) by homologous recombination (HR) requires the generation of a 3′ single-strand DNA overhang by exonuclease activities in a process called DNA resection. However, it is anticipated that the highly abundant DNA end-binding protein Ku sequesters seDSBs and shields them from exonuclease activities. Despite pioneering works in yeast, it is unclear how mammalian cells counteract Ku at seDSBs to allow HR to proceed. Here we show that in human cells, ATM-dependent phosphorylation of CtIP and the epistatic and coordinated actions of MRE11 and CtIP nuclease activities are required to limit the stable loading of Ku on seDSBs. We also provide evidence for a hitherto unsuspected additional mechanism that contributes to prevent Ku accumulation at seDSBs, acting downstream of MRE11 endonuclease activity and in parallel with MRE11 exonuclease activity. Finally, we show that Ku persistence at seDSBs compromises Rad51 focus assembly but not DNA resection. © 2016 The Author(s).

Alais S.,Equipe Oncogenese Retrovirale | Alais S.,Equipe labellisee Ligue Nationale Contre le Cancer | Alais S.,French Institute of Health and Medical Research | Alais S.,Ecole Normale Superieure de Lyon | And 11 more authors.
Journal of Virology | Year: 2015

Human T-cell leukemia virus type 1 (HTLV-1)-infected CD4+ T cells and dendritic cells (DCs) are present in peripheral blood from HTLV-1 carriers. While T-cell infection requires cell-cell contact, DCs might be infected with cell-free virus, at least in vitro. However, a thorough comparison of the susceptibilities of the two cell types to HTLV-1 infection using cell-associated and cell-free viral sources has not been performed. We first determined that human primary monocyte-derived dendritic cells (MDDCs) were more susceptible to HTLV-1 infection than their autologous lymphocyte counterparts after contact with chronically infected cells. Next, a comparison of infection efficiency using nonconcentrated or concentrated supernatants from infected cells as well as purified viral biofilm was performed. Integrated provirus was found after exposure of MDDCs or primary lymphocytes to viral biofilm but not to a viral supernatant. Using a large series of primary cell samples (n = 21), we demonstrated a higher proviral load in MDDCs exposed to viral biofilm than in lymphocytes. This higher susceptibility is correlated to a higher expression of neuropilin-1 on MDDCs than on autologous activated T lymphocytes. Moreover, we show that MDDCs infected with viral biofilm can transmit the virus to lymphocytes. In conclusion, MDDCs are more susceptible to HTLV-1 infection than autologous lymphocytes in vitro, supporting a model in which DC infection might represent an important step during primoinfection in vivo.

PubMed | The BRIC, Hopital Cochin, University of Strasbourg, Aix - Marseille University and 2 more.
Type: Journal Article | Journal: Leukemia | Year: 2016

TEN-ELEVEN-TRANSLOCATION-2 (TET2) and DNA-METHYLTRANSFERASE-3A (DNMT3A), both encoding proteins involved in regulating DNA methylation, are mutated in hematological malignancies affecting both myeloid and lymphoid lineages. We previously reported an association of TET2 and DNMT3A mutations in progenitors of patients with angioimmunoblastic T-cell lymphomas (AITL). Here, we report on the cooperative effect of Tet2 inactivation and DNMT3A mutation affecting arginine 882 (DNMT3A(R882H)) using a murine bone marrow transplantation assay. Five out of eighteen primary recipients developed hematological malignancies with one mouse developing an AITL-like disease, two mice presenting acute myeloid leukemia (AML)-like and two others T-cell acute lymphoblastic leukemia (T-ALL)-like diseases within 6 months following transplantation. Serial transplantations of DNMT3A(R882H) Tet2(-/-) progenitors led to a differentiation bias toward the T-cell compartment, eventually leading to AITL-like disease in 9/12 serially transplanted recipients. Expression profiling suggested that DNMT3A(R882H) Tet2(-/-) T-ALLs resemble those of NOTCH1 mutant. Methylation analysis of DNMT3A(R882H) Tet2(-/-) T-ALLs showed a global increase in DNA methylation affecting tumor suppressor genes and local hypomethylation affecting genes involved in the Notch pathway. Our data confirm the transformation potential of DNMT3A(R882H) Tet2(-/-) progenitors and represent the first cooperative model in mice involving Tet2 inactivation driving lymphoid malignancies.

Puvvula P.K.,University of Utah | Puvvula P.K.,Weis Center for Research | Desetty R.D.,Weis Center for Research | Pineau P.,Institute Pasteur Paris | And 12 more authors.
Nature Communications | Year: 2014

Cellular senescence is a stable cell cycle arrest that limits the proliferation of pre-cancerous cells. Here we demonstrate that scaffold-attachment-factor A (SAFA) and the long noncoding RNA PANDA differentially interact with polycomb repressive complexes (PRC1 and PRC2) and the transcription factor NF-YA to either promote or suppress senescence. In proliferating cells, SAFA and PANDA recruit PRC complexes to repress the transcription of senescence-promoting genes. Conversely, the loss of SAFA-PANDA-PRC interactions allows expression of the senescence programme. Accordingly, we find that depleting either SAFA or PANDA in proliferating cells induces senescence. However, in senescent cells where PANDA sequesters transcription factor NF-YA and limits the expression of NF-YA-E2F-coregulated proliferation-promoting genes, PANDA depletion leads to an exit from senescence. Together, our results demonstrate that PANDA confines cells to their existing proliferative state and that modulating its level of expression can cause entry or exit from senescence. © 2014 Macmillan Publishers Limited. All rights reserved.

Chabalier-Taste C.,Toulouse 1 University Capitole | Brichese L.,Toulouse 1 University Capitole | Racca C.,CNRS Institute of Pharmacology and Structural Biology | Racca C.,Toulouse 1 University Capitole | And 7 more authors.
Oncotarget | Year: 2016

Accurate repair of DNA double-strand breaks (DSB) caused during DNA replication and by exogenous stresses is critical for the maintenance of genomic integrity. There is growing evidence that the Polo-like kinase 1 (Plk1) that plays a number of pivotal roles in cell proliferation can directly participate in regulation of DSB repair. In this study, we show that Plk1 regulates BRCA1, a key mediator protein required to efficiently repair DSB through homologous recombination (HR). Following induction of DSB, BRCA1 concentrates in distinctive large nuclear foci at damage sites where multiple DNA repair factors accumulate. First, we found that inhibition of Plk1 shortly before DNA damage sensitizes cells to ionizing radiation and reduces DSB repair by HR. Second, we provide evidence that BRCA1 foci formation induced by DSB is reduced when Plk1 is inhibited or depleted. Third, we identified BRCA1 as a novel Plk1 substrate and determined that Ser1164 is the major phosphorylation site for Plk1 in vitro. In cells, mutation of Plk1 sites on BRCA1 significantly delays BRCA1 foci formation following DSB, recapitulating the phenotype observed upon Plk1 inhibition. Our data then assign a key function to Plk1 in BRCA1 foci formation at DSB, emphasizing Plk1 importance in the HR repair of human cells.

Roos-Weil D.,French Institute of Health and Medical Research | Roos-Weil D.,University Paris Saclay | Roos-Weil D.,Equipe Labellisee Ligue Nationale Contre Le Cancer | Nguyen-Khac F.,French Institute of Health and Medical Research | And 4 more authors.
American Journal of Hematology | Year: 2016

Recent advances in massively parallel sequencing technologies have provided a detailed picture of the mutational landscape in CLL and underscored the vast degree of interpatient and intratumor heterogeneities. These studies have led to the characterization of novel putative driver genes and recurrently affected biological pathways, and to the modeling of CLL clonal evolution. We herein review selected aspects including recent advances in the biology of CLL and present cellular and biological processes involved in the development of CLL and potentially other mature B-cell lymphoproliferative neoplasms. © 2016 Wiley Periodicals, Inc.

Fritah S.,Institute Pasteur Paris | Fritah S.,French Institute of Health and Medical Research | Fritah S.,Equipe Labellisee Ligue Nationale Contre le Cancer | Fritah S.,CRP Sante | And 15 more authors.
EMBO Reports | Year: 2014

Shigella flexneri, the etiological agent of bacillary dysentery, invades the human colonic epithelium and causes its massive inflammatory destruction. Little is known about the post-translational modifications implicated in regulating the host defense pathway against Shigella. Here, we show that SUMO-2 impairs Shigella invasion of epithelial cells in vitro. Using mice haploinsufficient for the SUMO E2 enzyme, we found that sumoylation regulates intestinal permeability and is required to restrict epithelial invasion and control mucosal inflammation. Quantitative proteomics reveals that Shigella infection alters the sumoylation status of a restricted set of transcriptional regulators involved in intestinal functions and inflammation. Consistent with this, sumoylation restricts the pro-inflammatory transcriptional response of Shigella-infected guts. Altogether, our results show that the SUMO pathway is an essential component of host innate protection, as it reduces the efficiency of two key steps of shigellosis: invasion and inflammatory destruction of the intestinal epithelium. © 2014 The Authors.

Frit P.,CNRS Institute of Pharmacology and Structural Biology | Frit P.,Toulouse 1 University Capitole | Frit P.,Equipe labellisee Ligue Nationale Contre le Cancer | Barboule N.,CNRS Institute of Pharmacology and Structural Biology | And 11 more authors.
DNA Repair | Year: 2014

To cope with DNA double strand break (DSB) genotoxicity, cells have evolved two main repair pathways: homologous recombination which uses homologous DNA sequences as repair templates, and non-homologous Ku-dependent end-joining involving direct sealing of DSB ends by DNA ligase IV (Lig4). During the last two decades a third player most commonly named alternative end-joining (A-EJ) has emerged, which is defined as any Ku- or Lig4-independent end-joining process. A-EJ increasingly appears as a highly error-prone bricolage on DSBs and despite expanding exploration, it still escapes full characterization. In the present review, we discuss the mechanism and regulation of A-EJ as well as its biological relevance under physiological and pathological situations, with a particular emphasis on chromosomal instability and cancer. Whether or not it is a genuine DSB repair pathway, A-EJ is emerging as an important cellular process and understanding A-EJ will certainly be a major challenge for the coming years. © 2014 The Authors.

Britton S.,CNRS Institute of Pharmacology and Structural Biology | Britton S.,Toulouse 1 University Capitole | Britton S.,Equipe Labellisee Ligue Nationale Contre le Cancer | Dernoncourt E.,CNRS Institute of Pharmacology and Structural Biology | And 18 more authors.
Nucleic Acids Research | Year: 2014

We previously identified the heterogeneous ribonucleoprotein SAF-A/hnRNP U as a substrate for DNA-PK, a protein kinase involved in DNA damage response (DDR). Using laser micro-irradiation in human cells, we report here that SAF-A exhibits a twophase dynamics at sites of DNA damage, with a rapid and transient recruitment followed by a prolonged exclusion. SAF-A recruitment corresponds to its binding to Poly(ADP-ribose) while its exclusion is dependent on the activity of ATM, ATR and DNA-PK and reflects the dissociation from chromatin of SAF-A associated with ongoing transcription. Having established that SAF-A RNA-binding domain recapitulates SAF-A dynamics, we show that this domain is part of a complex comprising several mRNA biogenesis proteins of which at least two, FUS/TLS and TAFII68/TAF15, exhibit similar biphasic dynamics at sites of damage. Using an original reporter for live imaging of DNA:RNA hybrids (R-loops), we show a transient transcription-dependent accumulation of R-loops at sites of DNA damage that is prolonged upon inhibition of RNA biogenesis factors exclusion. We propose that a new component of the DDR is an active anti-R-loop mechanism operating at damaged transcribed sites which includes the exclusion of mRNA biogenesis factors such as SAF-A, FUS and TAF15. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

Di Paolo A.,CNRS Institute of Pharmacology and Structural Biology | Di Paolo A.,University Paul Sabatier | Racca C.,CNRS Institute of Pharmacology and Structural Biology | Racca C.,University Paul Sabatier | And 5 more authors.
FASEB Journal | Year: 2014

In contrast to its well-known role in the DNA damage response during interphase, the function of BRCA1 in the maintenance of chromosomal stability during mitosis remains to be defined. In this study, we uncover a novel role of BRCA1 in preserving centromere integrity in mitotic human cells. Using immunofluorescence and chromatin immunoprecipitation approaches, we report BRCA1 association with centromeric chromatin during mitosis. BRCA1 depletion impairs centromeric cohesion, leading to an increase in interkinetochore distance and in unpaired sister-chromatids frequency during prometaphase. Moreover, BRCA1 loss partially decreased accumulation of the Aurora B kinase at the centromere. We found that proper recruitment of the DNMT3b DNA methyltransferase to satellite sequences is BRCA1-dependent during mitosis, suggesting that DNA hypomethylation contributes to Aurora B mislocalization. BRCA1-deficient cells exhibited decreased ability to correct improper Aurora B-dependent chromosome-spindle attachments and to align chromosomes at metaphase. Finally, we show that BRCA1 disruption promotes merotelic kinetochore attachments that represent a major mechanism of aneuploidy in human cells. In summary, we report here a novel function of BRCA1 in maintaining chromosomal stability through its contribution to the mitotic centromere integrity necessary for faithful segregation of sister-chromatids during cell division. © FASEB.

Loading Equipe labellisee Ligue Nationale Contre le Cancer collaborators
Loading Equipe labellisee Ligue Nationale Contre le Cancer collaborators